Advances in integrated plasma control on DIII-D

The DIII-D advanced tokamak physics program requires extremely high performance from the DIII-D plasma control system, including simultaneous accurate regulation of plasma shape, stored energy, density and divertor characteristics, as well as coordinated suppression of magnetohydrodynamic instabilit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fusion engineering and design 2007-10, Vol.82 (5), p.1051-1057
Hauptverfasser: Walker, M.L., Ferron, J.R., Hahn, S.H., Humphreys, D.A., In, Y., Johnson, R.D., Kim, J.S., La Haye, R.J., Leuer, J.A., Penaflor, B.G., Welander, A.S., Xiao, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The DIII-D advanced tokamak physics program requires extremely high performance from the DIII-D plasma control system, including simultaneous accurate regulation of plasma shape, stored energy, density and divertor characteristics, as well as coordinated suppression of magnetohydrodynamic instabilities. To satisfy these demanding control requirements, we apply the integrated plasma control method, consisting of construction of physics-based plasma and system response models, validation of models against operating experiments, design of integrated controllers that operate in concert with one another, simulation of control action against off-line and actual machine control platforms, and optimization through iteration of the design-test loop. The present work describes progress in development of physics models and development and experimental application of new model-based plasma controllers on DIII-D. We also describe the development of the control software, hardware, and model-based control algorithms for the superconducting EAST and KSTAR tokamaks.
ISSN:0920-3796
1873-7196
DOI:10.1016/j.fusengdes.2007.07.047