Mechanistic insights into CO2 hydrogenation to methanol on Cu(110): unveiling energy linear relationships and enhancing performance strategies
The study of energy correlations in catalytic reactions plays a pivotal role in guiding catalyst development. This paper focuses on the investigation of energy linear relationships in methanol synthesis from CO2 hydrogenation on copper surfaces, systematically exploring energy parameters including a...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2024-08, Vol.26 (34), p.22739-22751 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The study of energy correlations in catalytic reactions plays a pivotal role in guiding catalyst development. This paper focuses on the investigation of energy linear relationships in methanol synthesis from CO2 hydrogenation on copper surfaces, systematically exploring energy parameters including activation energy, reaction energy and adsorption energy. A comparative analysis of the adsorption characteristics and reaction parameters in the formate, formic acid and reverse water–gas shift pathways is conducted, laying the data foundation for subsequent linear studies. Then, descriptors are extracted from electronic, energetic and structural information and further integrated using the sure independence screening and sparsifying operator (SISSO) method to establish an energy description paradigm characterized by interpretability and accuracy. Additionally, reactions are further categorized based on hydrogenation types to mitigate the adverse effects of redundant data points. Finally, the summarized reaction descriptors are extended to Cu-based alloy systems to highlight the rationality and transferability of the developed descriptors. |
---|---|
ISSN: | 1463-9076 1463-9084 1463-9084 |
DOI: | 10.1039/d4cp01969e |