Selenium Bandages and Cotton Cloth That Kill Microorganisms in Wounds
The material of a bandage plays an important role in wound management. Microorganisms can colonize the dressing and release toxins, which create dead cells in the wound. This allows the microorganisms to bind the dead cells and infect the wound. Thus, a dressing is needed that kills bacteria in the...
Gespeichert in:
Veröffentlicht in: | Military medicine 2024-08, Vol.189 (Supplement_3), p.179-183 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The material of a bandage plays an important role in wound management. Microorganisms can colonize the dressing and release toxins, which create dead cells in the wound. This allows the microorganisms to bind the dead cells and infect the wound. Thus, a dressing is needed that kills bacteria in the bandage. To combat health care-associated infections, antimicrobial treatment of medical textiles, such as gauze, uniforms, curtains, bed sheets, gowns, and masks, is required. Besides, antimicrobial resistance is another major problem of this century. Antibacterial overuse has contributed to drug-resistant bacteria. To combat these two problems, we synthesized new organo-selenium compounds that can be attached to the cotton of the dressing. We then used an in vivo wound model, which allowed us to measure the effectiveness of selenium attached to a cotton dressing, to prevent bacteria from infecting a wound.
Organo-selenium was attached to cotton fabric, resulting in a fabric with 0.1% selenium covalently attached to it. Staphylococcus aureus (as well as methicillin-resistant S. aureus [MRSA]), Stenotrophomonas maltophilia, Enterococcus faecalis, Staphylococcus epidermidis, and Pseudomonas aeruginosa were chosen for the wound infection study. All the bacteria were enumerated in the wound dressing and in the wound tissue under the dressing. Wounds were made on the backs of mice. The material was used as a bandage over the wound. Bacteria were injected into the wound under the bandage. The amount of bacteria in the wound after 5 days was determined. A similar study was performed using dressing material that was soaked in phosphate buffered saline at 37 °C for 3 months before use.
Cotton dressing with selenium attached showed complete inhibition (7 logs, as compared with control dressing) of different bacterial strains, in both the dressing and "the tissue" of the wound. Similar results were obtained using selenium cotton dressing that was soaked for 3 months before use. Control cotton with no selenium showed complete infiltration of bacteria into the wound and the dressing. In addition, a study was performed under Food and Drug Administration standard methods to show the ability of the selenium to kill bacteria in the fabric, using material that was washed 5 times in detergent. This also showed complete killing of bacteria in the fabric.
The results show that the selenium remains in the dressing after washing and is able to completely protect the wound from bacter |
---|---|
ISSN: | 0026-4075 1930-613X 1930-613X |
DOI: | 10.1093/milmed/usae069 |