Realizing Topological Superconductivity in Tunable Bose-Fermi Mixtures with Transition Metal Dichalcogenide Heterostructures
Heterostructures of two-dimensional transition metal dichalcogenides are emerging as a promising platform for investigating exotic correlated states of matter. Here, we propose to engineer Bose-Fermi mixtures in these systems by coupling interlayer excitons to doped charges in a trilayer structure....
Gespeichert in:
Veröffentlicht in: | Physical review letters 2024-08, Vol.133 (5), p.056902, Article 056902 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Heterostructures of two-dimensional transition metal dichalcogenides are emerging as a promising platform for investigating exotic correlated states of matter. Here, we propose to engineer Bose-Fermi mixtures in these systems by coupling interlayer excitons to doped charges in a trilayer structure. Their interactions are determined by the interlayer trion, whose spin-selective nature allows excitons to mediate an attractive interaction between charge carriers of only one spin species. Remarkably, we find that this causes the system to become unstable to topological p+ip superconductivity at low temperatures. We then demonstrate a general mechanism to develop and control this unconventional state by tuning the trion binding energy using a solid-state Feshbach resonance. |
---|---|
ISSN: | 0031-9007 1079-7114 1079-7114 |
DOI: | 10.1103/PhysRevLett.133.056902 |