High-Photon-Loss Threshold Quantum Computing Using GHZ-State Measurements

We propose fault-tolerant architectures based on performing projective measurements in the Greenberger-Horne-Zeilinger (GHZ) basis on constant-sized, entangled resource states. We present linear-optical constructions of the architectures, where the GHZ-state measurements are encoded to suppress the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2024-08, Vol.133 (5), p.050604, Article 050604
Hauptverfasser: Pankovich, Brendan, Kan, Angus, Wan, Kwok Ho, Ostmann, Maike, Neville, Alex, Omkar, Srikrishna, Sohbi, Adel, Brádler, Kamil
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose fault-tolerant architectures based on performing projective measurements in the Greenberger-Horne-Zeilinger (GHZ) basis on constant-sized, entangled resource states. We present linear-optical constructions of the architectures, where the GHZ-state measurements are encoded to suppress the errors induced by photon loss and the probabilistic nature of linear optics. Simulations of our constructions demonstrate high single-photon-loss thresholds compared to the state-of-the-art linear-optical architecture realized with encoded two-qubit fusion measurements performed on constant-sized resource states. We believe this result shows a resource-efficient path to achieving photonic fault-tolerant quantum computing.
ISSN:0031-9007
1079-7114
1079-7114
DOI:10.1103/PhysRevLett.133.050604