High-Photon-Loss Threshold Quantum Computing Using GHZ-State Measurements
We propose fault-tolerant architectures based on performing projective measurements in the Greenberger-Horne-Zeilinger (GHZ) basis on constant-sized, entangled resource states. We present linear-optical constructions of the architectures, where the GHZ-state measurements are encoded to suppress the...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2024-08, Vol.133 (5), p.050604, Article 050604 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose fault-tolerant architectures based on performing projective measurements in the Greenberger-Horne-Zeilinger (GHZ) basis on constant-sized, entangled resource states. We present linear-optical constructions of the architectures, where the GHZ-state measurements are encoded to suppress the errors induced by photon loss and the probabilistic nature of linear optics. Simulations of our constructions demonstrate high single-photon-loss thresholds compared to the state-of-the-art linear-optical architecture realized with encoded two-qubit fusion measurements performed on constant-sized resource states. We believe this result shows a resource-efficient path to achieving photonic fault-tolerant quantum computing. |
---|---|
ISSN: | 0031-9007 1079-7114 1079-7114 |
DOI: | 10.1103/PhysRevLett.133.050604 |