Is There an Adduct of Pyridine N‑Oxide and Boron Trifluoride in the Gaseous State? Gas Electron Diffraction vs Mass Spectrometry

A study of saturated vapor over the pyridine N-oxide-boron trifluoride (PyO-BF3) adduct was carried out at T = 448(5) K by a synchronous gas electron diffraction/mass spectrometry (GED/MS) experiment. Due to the absence of ions in the mass spectrum, indicating the presence of a structure with an O–B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2024-09, Vol.63 (35), p.16451-16460
Hauptverfasser: Lebedev, Ivan S., Belova, Natalya V., Giricheva, Nina I., Andreev, Vladimir P., Sobolev, Pavel S., Girichev, Georgiy V.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A study of saturated vapor over the pyridine N-oxide-boron trifluoride (PyO-BF3) adduct was carried out at T = 448(5) K by a synchronous gas electron diffraction/mass spectrometry (GED/MS) experiment. Due to the absence of ions in the mass spectrum, indicating the presence of a structure with an O–B dative bond, several models of vapor composition were tested by the GED method. It was found that the dominant molecular form (up to 100%) in vapor is the PyO-BF3 adduct. Using the DFT/M06-2X/aug-cc-pVTZ method, geometric optimization of the molecular ion [PyO-BF3]+ was carried out, which showed its intrinsic instability and dissociation into a [PyO]+ cation and a BF3 molecule. This study certainly demonstrates the significant advantage of the GED method to determine the qualitative and quantitative gas-phase composition of dative-bonded adducts and other noncovalent complexes as well, whereas the interpretation of mass spectra may be ambiguous due to the possible intrinsic instability of ions containing a dative bond. The nature of the O–B bond is discussed in terms of the natural bond orbitals (NBOs) and the quantum theory of atoms in molecules (QTAIM). A comparison of structural and energetic parameters for PyO-BF3 and the previously studied BF3 adducts allows the theoretical comprehension of the nature of the O–B bond to be extended and to explain the different thermal stabilities of these compounds.
ISSN:0020-1669
1520-510X
1520-510X
DOI:10.1021/acs.inorgchem.4c02714