Salvianolic acid B improves mitochondrial dysfunction of septic cardiomyopathy via enhancing ATF5-mediated mitochondrial unfolded protein response
Septic cardiomyopathy is characterized by impaired contractile function and mitochondrial activity dysregulation. Salvianolic acid B (Sal B) is a potent therapeutic compound derived from the traditional Chinese medicine Salvia miltiorrhiza. This study explored the protective effects of Sal B on sept...
Gespeichert in:
Veröffentlicht in: | Toxicology and applied pharmacology 2024-10, Vol.491, p.117072, Article 117072 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Septic cardiomyopathy is characterized by impaired contractile function and mitochondrial activity dysregulation. Salvianolic acid B (Sal B) is a potent therapeutic compound derived from the traditional Chinese medicine Salvia miltiorrhiza. This study explored the protective effects of Sal B on septic heart injury, emphasizing the mitochondrial unfolded protein response (UPRmt).
An in vivo mouse model of lipopolysaccharide (LPS)-induced heart injury was utilized to assess Sal B's protective role in septic cardiomyopathy. Additionally, cell models stimulated by LPS were developed to investigate the mechanisms of Sal B on UPRmt. Quantitative polymerase chain reaction, western blotting, immunohistochemistry, and immunofluorescence were employed for molecular analysis.
Sal B, administered at doses of 10, 30, and 60 mg/kg, demonstrated protective effects on cardiac contractile function, reduced heart inflammation, and mitigated cardiac injury in LPS-exposed mice. In cardiomyocytes, LPS induced apoptosis, elevated mitochondrial ROS levels, promoted mitochondrial fission, and decreased mitochondrial membrane potential, all of which were alleviated by Sal B. Mechanistically, Sal B was found to induce UPRmt both in vivo and in vitro. ATF5, identified as a UPRmt activator, was modulated by LPS and Sal B, resulting in increased ATF5 expression and its translocation from the cytosol to the nucleus. ATF5-siRNA delivery reversed UPRmt upregulation, exacerbating mitochondrial dysfunction in LPS-stimulated cardiomyocytes and counteracting the mitochondrial function enhancement in Sal B-treated cardiomyocytes.
This study provides evidence that Sal B confers cardiac protection by enhancing UPRmt, highlighting its potential as a therapeutic approach for mitigating mitochondrial dysfunction in septic cardiomyopathy.
[Display omitted]
•Salvianolic acid B ameliorates mitochondrial dysfunction and improve cardiac function in SCM.•The UPRmt is involved in Salvianolic acid B treatment for mitochondrial dysfunction.•Salvianolic acid B augments the UPRmt via the transcription factor ATF5. |
---|---|
ISSN: | 0041-008X 1096-0333 1096-0333 |
DOI: | 10.1016/j.taap.2024.117072 |