Rapid prediction for the transient dispersion of leaked airborne pollutant in urban environment based on graph neural networks
Rapidly predicting airborne pollutant dispersion in urban is vital for ventilation design and evacuation planning. Computational fluid dynamics (CFD) simulations are commonly used to provide accurate predictions, but the computational cost is too high. Although graph neural networks (GNNs) provide f...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2024-10, Vol.478, p.135517, Article 135517 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rapidly predicting airborne pollutant dispersion in urban is vital for ventilation design and evacuation planning. Computational fluid dynamics (CFD) simulations are commonly used to provide accurate predictions, but the computational cost is too high. Although graph neural networks (GNNs) provide fast predictions of flow fields by manipulating unstructured mesh on GPU, they suffer from high memory usage and accuracy decreases when applied to large-scale urban scenes. Moreover, it is difficult for GNNs to learn the coupled relationship between wind field and pollutant concentration field. We propose a multi-objective GNN model as CFD surrogate to rapidly predict the transient dispersion of airborne pollutant under the influence of complex wind field patterns in urban environment. Based on random urban layouts generated by a 2D bin packing algorithm, we employ a validated CFD model to construct a sample dataset of wind fields and concentration fields. We leverage graph pooling and multi-scale feature fusion to improve prediction accuracy, and subgraph partitioning of both wind field and concentration field to reduce GPU memory usage. The results show that our GNN model at its best runs 1–2 orders of magnitude faster than CFD simulation with accuracy evaluation metrics R2=0.92, and achieves 70 % GPU memory reduction.
[Display omitted]
•Multi-target GNN for air pollutant dispersion prediction in urban environment.•Employing 2D bin packing algorithm for generating random building layout.•Integrating graph pooling and multi-scale feature fusion for accuracy improvement.•Subgraph partitioning of wind and concentration field for GPU memory reduction. |
---|---|
ISSN: | 0304-3894 1873-3336 1873-3336 |
DOI: | 10.1016/j.jhazmat.2024.135517 |