Characterizing homomorphisms and derivations on C-algebras
The main theorem states that a bounded linear operator $h$ from a unital $C^{\ast}$-algebra $A$ into a unital Banach algebra $B$ must be a homomorphism provided that $h(\bm{1})=\bm{1}$ and the following condition holds: if $x,y,z\in A$ are such that $xy=yz=0$, then $h(x)h(y)h(z)=0$. This theorem cov...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2007-02, Vol.137 (1), p.1-7 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The main theorem states that a bounded linear operator $h$ from a unital $C^{\ast}$-algebra $A$ into a unital Banach algebra $B$ must be a homomorphism provided that $h(\bm{1})=\bm{1}$ and the following condition holds: if $x,y,z\in A$ are such that $xy=yz=0$, then $h(x)h(y)h(z)=0$. This theorem covers various known results; in particular it yields Johnson's theorem on local derivations. |
---|---|
ISSN: | 0308-2105 1473-7124 |
DOI: | 10.1017/S0308210505000090 |