Characterizing homomorphisms and derivations on C-algebras

The main theorem states that a bounded linear operator $h$ from a unital $C^{\ast}$-algebra $A$ into a unital Banach algebra $B$ must be a homomorphism provided that $h(\bm{1})=\bm{1}$ and the following condition holds: if $x,y,z\in A$ are such that $xy=yz=0$, then $h(x)h(y)h(z)=0$. This theorem cov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2007-02, Vol.137 (1), p.1-7
Hauptverfasser: Alaminos, J., Extremera, J., Villena, A. R., Brešar, M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main theorem states that a bounded linear operator $h$ from a unital $C^{\ast}$-algebra $A$ into a unital Banach algebra $B$ must be a homomorphism provided that $h(\bm{1})=\bm{1}$ and the following condition holds: if $x,y,z\in A$ are such that $xy=yz=0$, then $h(x)h(y)h(z)=0$. This theorem covers various known results; in particular it yields Johnson's theorem on local derivations.
ISSN:0308-2105
1473-7124
DOI:10.1017/S0308210505000090