Mechanistic study of NUPR1 in bladder cancer development through transcriptional regulation of CCR2
Nuclear protein‐1 (NUPR1) (also known as p8) is one of the genes associated with transcription factors that participate in various aspects of cancer initiation and development. However, the molecular mechanisms of NUPR1 in bladder cancer (BLCA) remain unclear. We conducted an analysis of the correla...
Gespeichert in:
Veröffentlicht in: | Journal of cellular physiology 2024-11, Vol.239 (11), p.e31412-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nuclear protein‐1 (NUPR1) (also known as p8) is one of the genes associated with transcription factors that participate in various aspects of cancer initiation and development. However, the molecular mechanisms of NUPR1 in bladder cancer (BLCA) remain unclear. We conducted an analysis of the correlation between NUPR1 expression and related genes using the Gene Expression Omnibus (GEO) online database. We employed lentivirus‐mediated small interfering RNA (siRNA) to knockdown the expression of NUPR1 in two human BLCA cell lines. In vitro experiments were conducted to validate the impact of NUPR1 interference on BLCA and the influence of NUPR1 on the transcription of chemokine receptor‐2 (CCR2). Furthermore, transcription factors for CCR2 were predicted using the PROMO database. Co‐immunoprecipitation (Co‐IP) and immunofluorescence double staining were used to detect the binding between NUPR1 and CCAAT/enhancer binding protein γ (CEBPG). In vivo and in vitro experiments were conducted to validate that NUPR1 regulates CCR2 transcription through CEBPG. In vitro experiments indicate that the suppression of NUPR1 inhibited BLCA growth. Analysis of the GEO database revealed a positive correlation between the expression of NUPR1 and CCR2. Luciferase experiments confirmed that NUPR1 influences the transcription of CCR2. Online data indicates that CEBPG is a transcription factor for CCR2. Co‐IP and immunofluorescence double staining confirmed binding between NUPR1 and CEBPG. Luciferase assays and chromatin immunoprecipitation (ChIP) demonstrate that CEBPG regulates the transcription of CCR2. Additionally, rescue experiments at the cellular level and animal experiments validated the aforementioned mechanism. NUPR1 promotes a promotional role in BLCA, and interference with NUPR1 can inhibit the proliferation and invasive abilities of BLCA. There was a correlation between the expressions of NUPR1 and CCR2, and NUPR1 binds with CEBPG in the cell nucleus. Transcriptional regulation of CCR2 by NUPR1 may be achieved through the involvement of CEBPG. |
---|---|
ISSN: | 0021-9541 1097-4652 1097-4652 |
DOI: | 10.1002/jcp.31412 |