Dual-/multi-organelle-targeted AIE probes associated with oxidative stress for biomedical applications
In situ monitoring of biological processes between different organelles upon oxidative stress is one of the most important research hotspots. Fluorescence imaging is especially suitable for biomedical applications due to its distinct advantages of high spatiotemporal resolution, high sensitivity, no...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2024-09, Vol.12 (36), p.8812-8824 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In situ
monitoring of biological processes between different organelles upon oxidative stress is one of the most important research hotspots. Fluorescence imaging is especially suitable for biomedical applications due to its distinct advantages of high spatiotemporal resolution, high sensitivity, non-invasiveness, and
in situ
monitoring capabilities. However, most fluorescent probes can only achieve light-up imaging of single organelles, thus the combined use of two or more probes is usually required for monitoring biological processes between organelles, which can suffer from tedious staining and washing procedures, increased cytotoxicity and poor photostability. Exogenetic oxidants can affect broad-spectrum subcellular organelles, which are not conducive to
in situ
monitoring of biological processes between specific organelles. To tackle these challenges, a series of dual-/multi-organelle-targeted aggregation-induced emission (AIE) probes associated with oxidative stress have been designed and developed in the past few years. Herein, the recent progress of these AIE probes is summarized in biomedical applications, such as apoptosis monitoring, interplay between organelles, microenvironmental changes of organelles, organelle morphology tracking, precise cancer therapy, and so forth. Moreover, the further outlook for dual-/multi-organelle-targeted AIE probes is discussed, aiming to promote innovative research in biomedical applications.
This review summarizes the recent advancements in biomedical applications of dual-/multi-organelle-targeted aggregation-induced emission (AIE) probes, focusing on their
in situ
induction of oxidative stress. |
---|---|
ISSN: | 2050-750X 2050-7518 2050-7518 |
DOI: | 10.1039/d4tb01440e |