Untrained physics-driven aberration retrieval network
In the field of coherent diffraction imaging, phase retrieval is essential for correcting the aberration of an optic system. For estimating aberration from intensity, conventional methods rely on neural networks whose performance is limited by training datasets. In this Letter, we propose an untrain...
Gespeichert in:
Veröffentlicht in: | Optics letters 2024-08, Vol.49 (16), p.4545 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the field of coherent diffraction imaging, phase retrieval is essential for correcting the aberration of an optic system. For estimating aberration from intensity, conventional methods rely on neural networks whose performance is limited by training datasets. In this Letter, we propose an untrained physics-driven aberration retrieval network (uPD-ARNet). It only uses one intensity image and iterates in a self-supervised way. This model consists of two parts: an untrained neural network and a forward physical model for the diffraction of the light field. This physical model can adjust the output of the untrained neural network, which can characterize the inverse process from the intensity to the aberration. The experiments support that our method is superior to other conventional methods for aberration retrieval. |
---|---|
ISSN: | 0146-9592 1539-4794 1539-4794 |
DOI: | 10.1364/OL.523377 |