Novel Genes Associated With Atrial Fibrillation and the Predictive Models for AF Incorporating Polygenic Risk Score and PheWAS-Derived Risk Factors

Atrial fibrillation (AF), the most common atrial arrhythmia, presents with varied clinical manifestations. Despite the identification of genetic loci associated with AF, particularly in specific populations, research within Asian ethnicities remains limited. In this study we aimed to develop predict...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of cardiology 2024-11, Vol.40 (11), p.2117-2127
Hauptverfasser: Chen, Shih-Yin, Chen, Yu-Chia, Liu, Ting-Yuan, Chang, Kuan-Cheng, Chang, Shih-Sheng, Wu, Ning, Lee Wu, Donald, Dunlap, Rylee Kay, Chan, Chia-Jung, Yang, Jai-Sing, Liao, Chi Chou, Tsai, Fuu-Jen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Atrial fibrillation (AF), the most common atrial arrhythmia, presents with varied clinical manifestations. Despite the identification of genetic loci associated with AF, particularly in specific populations, research within Asian ethnicities remains limited. In this study we aimed to develop predictive models for AF using AF-associated single-nucleotide polymorphisms (SNPs) from a genome-wide association study (GWAS) on a substantial cohort of Taiwanese individuals, to evaluate the predictive efficacy of the model. There were 75,121 subjects, that included 5694 AF patients and 69,427 normal control subjects with GWAS data, and we merged polygenic risk scores from AF-associated SNPs with phenome-wide association study-derived risk factors. Advanced statistical and machine learning techniques were used to develop and evaluate AF predictive models for discrimination and calibration. The study identified the top 30 significant SNPs associated with AF, predominantly on chromosomes 10 and 16, implicating genes like NEURL1, SH3PXD2A, INA, NT5C2, STN1, and ZFHX3. Notably, INA, NT5C2, and STN1 were newly linked to AF. The GWAS predictive power using polygenic risk score-continuous shrinkage analysis for AF exhibited an area under the curve of 0.600 (P < 0.001), which improved to 0.855 (P < 0.001) after adjusting for age and sex. Phenome-wide association study analysis showed the top 10 diseases associated with these genes were circulatory system diseases. Integrating genetic and phenotypic data enhanced the accuracy and clinical relevance of AF predictive models. The findings suggest promise for refining AF risk assessment, enabling personalized interventions, and reducing AF-related morbidity and mortality burdens. La fibrillation auriculaire (FA) est l’arythmie auriculaire la plus courante et provoque tout un éventail de manifestations cliniques. Malgré l’identification des loci génétiques associés à la FA dans certaines populations, les travaux de recherche chez les personnes d’origine asiatique demeurent limités. Dans cette étude, nous avons tâché d’élaborer des modèles prédictifs pour la FA à partir des polymorphismes mononucléotidiques d’une étude d’association pangénomique (GWAS, genome-wide association study) menée auprès d’une cohorte de taille substantielle issue de Taïwan et d’évaluer l’efficacité prédictive du modèle. L’étude comportait 75 121 sujets, dont 5 694 patients atteints de FA et 69 427 témoins normaux disposant de données GWAS. Nous avons fusi
ISSN:0828-282X
1916-7075
1916-7075
DOI:10.1016/j.cjca.2024.07.029