Multi-type maternal diabetes mellitus affects human placental villous geometric morphology: A three-dimensional imaging study
Diabetes mellitus leads to maldevelopment of the villous morphology in the human placenta, disrupting the exchange of materials between the maternal and fetal compartments, consequently compromising fetal development. This study aims to explore how different types of diabetes mellitus affect human p...
Gespeichert in:
Veröffentlicht in: | Placenta (Eastbourne) 2024-09, Vol.155, p.70-77 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Diabetes mellitus leads to maldevelopment of the villous morphology in the human placenta, disrupting the exchange of materials between the maternal and fetal compartments, consequently compromising fetal development. This study aims to explore how different types of diabetes mellitus affect human placental villous geometric morphology including branching numbers and sizes (length, diameter).
Here an optical coherence tomography (OCT)-based 3D imaging platform was utilized to capture 3D images of placental villi from different types of diabetes, including type 1 diabetes mellitus (T1DM), type 2 diabetes mellitus (T2DM), and gestational diabetes mellitus (GDM).
Different types of diabetes mellitus exhibit different effects on human placental villous geometric morphological parameters: GDM had greater placenta villous parameters at intermediate villous diameter (IVD), terminal villous diameter (TVD), terminal villous length (TVL) compared to the healthy, T1DM, and T2DM, and these differences were statistically significant. The TVD of T1DM and T2DM had significantly greater sizes than the healthy. There was no statistically significant difference in the number of villous branches among the three types of diabetes, but T1DM and GDM had more villous branches than healthy individuals.
Diabetes mellitus affects the geometric morphology of human placental villi, with varying effects observed in pregnancies of different diabetes types. These findings offer a novel avenue for exploring underlying pathophysiological mechanisms and enhancing the management of women with diabetes from preconception through pregnancy.
•Human placental villous morphology differs by maternal diabetes type.•Terminal villus diameter quite differs by maternal diabetes type.•Gestational diabetes mellitus (GDM) has the longest terminal villus length.•Type-1 diabetes and GDM have more villi branches than healthy.•GDM has the largest intermediate villus diameter. |
---|---|
ISSN: | 0143-4004 1532-3102 1532-3102 |
DOI: | 10.1016/j.placenta.2024.07.310 |