Multi-responsive poly-catecholamine nanomembranes

The contraction of nanomaterials triggered by stimuli can be harnessed for micro- and nanoscale energy harvesting, sensing, and artificial muscles toward manipulation and directional motion. The search for these materials is dictated by optimizing several factors, such as stimulus type, conversion e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2024-08, Vol.16 (34), p.16227-16237
Hauptverfasser: Krysztofik, Adam, War ajtis, Marta, Pochylski, Miko aj, Boecker, Marcel, Yu, Jiyao, Marchesi D'Alvise, Tommaso, Pu a, Przemys aw, Majewski, Pawe W, Synatschke, Christopher V, Weil, Tanja, Graczykowski, Bartlomiej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The contraction of nanomaterials triggered by stimuli can be harnessed for micro- and nanoscale energy harvesting, sensing, and artificial muscles toward manipulation and directional motion. The search for these materials is dictated by optimizing several factors, such as stimulus type, conversion efficiency, kinetics and dynamics, mechanical strength, compatibility with other materials, production cost and environmental impact. Here, we report the results of studies on bio-inspired nanomembranes made of poly-catecholamines such as polydopamine, polynorepinephrine, and polydextrodopa. Our findings reveal robust mechanical features and remarkable multi-responsive properties of these materials. In particular, their immediate contraction can be triggered globally by atmospheric moisture reduction and temperature rise and locally by laser or white light irradiation. For each scenario, the process is fully reversible, i.e. , membranes spontaneously expand upon removing the stimulus. Our results unveil the universal multi-responsive nature of the considered polycatecholamine membranes, albeit with distinct differences in their mechanical features and response times to light stimulus. We attribute the light-triggered contraction to photothermal heating, leading to water desorption and subsequent contraction of the membranes. The combination of multi-responsiveness, mechanical robustness, remote control via light, low-cost and large-scale fabrication, biocompatibility, and low-environment impact makes polycatecholamine materials promising candidates for advancing technologies. The contraction of nanomaterials triggered by stimuli can be harnessed for micro- and nanoscale energy harvesting, sensing, and artificial muscles toward manipulation and directional motion.
ISSN:2040-3364
2040-3372
2040-3372
DOI:10.1039/d4nr01050g