Engineering Asymmetric Strain within C‑Shaped CeO2 Nanofibers for Stabilizing Sub‑3 nm Pt Clusters against Sintering
Ultrafine noble metals have emerged as advanced nanocatalysts in modern society but still suffer from unavoidable sintering at temperatures above 250 °C (e.g., Pt). In this work, closely packed CeO2 grains were confined elegantly in fibrous nanostructures and served as a porous support for stabilizi...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-09, Vol.16 (36), p.47513-47523 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ultrafine noble metals have emerged as advanced nanocatalysts in modern society but still suffer from unavoidable sintering at temperatures above 250 °C (e.g., Pt). In this work, closely packed CeO2 grains were confined elegantly in fibrous nanostructures and served as a porous support for stabilizing sub-3 nm Pt clusters. Through precisely manipulating the asymmetry of obtained nanofibers, uneven strain was induced within C-shaped CeO2 nanofibers with tensile strain at the outer side and compressive strain at the inner side. As a result, the enriched oxygen vacancies significantly improved adhesion of Pt to CeO2, thereby boosting the sinter-resistance of ultraclose sub-3 nm Pt clusters. Notably, no aggregation was observed even after exposure to humid air at 750 °C for 12 h, which is far beyond their Tammann temperature (sintering onset temperature, below 250 °C). In situ HAADF-STEM observation revealed a unique sintering mechanism, wherein Pt clusters initially migrate toward the grain boundaries with concentrated stain and undergo slight coalescence, followed by subsequent Ostwald ripening at higher temperatures. Moreover, the sinter-resistant Pt/C-shaped CeO2 effectively catalyzed soot combustion (over 700 °C) in a durable manner. This work provides a new insight for developing sinter-resistant catalysts from the perspective of strain engineering within nano-oxides. |
---|---|
ISSN: | 1944-8244 1944-8252 1944-8252 |
DOI: | 10.1021/acsami.4c08126 |