Effects of Glycine on epigenetic modification and early embryonic development in porcine oocytes exposed to monobutyl phthalate

Monobutyl phthalate (MBP) is the primary active metabolite of dibutyl phthalate (DBP), the key plasticizer component. A substantial body of evidence from studies conducted on both animals and humans indicates that MBP exposure could result in harmful impacts on toxicity pathways. In addition, it can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reproductive toxicology (Elmsford, N.Y.) N.Y.), 2024-10, Vol.129, p.108684, Article 108684
Hauptverfasser: Teng, Ran, Gao, Lepeng, Sun, Xiaoqing, Zhang, Enbo, Sun, Yutong, Li, Suo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Monobutyl phthalate (MBP) is the primary active metabolite of dibutyl phthalate (DBP), the key plasticizer component. A substantial body of evidence from studies conducted on both animals and humans indicates that MBP exposure could result in harmful impacts on toxicity pathways. In addition, it can seriously affect human and animal reproductive health. In our present study, we showed that exposure to MBP causes abnormal epigenetic modifications in porcine oocytes and failure of early embryonic development. However, glycine (Gly) can protect oocytes and early embryos from damage caused by MBP. Our study indicated a significant decrease in the percentage of porcine oocytes that reached the metaphase II (MII) phase when exposed to MBP. SET-domain-containing 2(SETD2)-mediated H3K36me3 histone methylation was detected, and the results showed that MBP significantly decreased the protein expression of H3K36me3 and SETD2. Moreover, the expression of the DNA break markers γH2AX and the mRNA expression of Asf1a, and Asf1b increased in the MBP group. The detection of DNA methylation marker proteins showed that MBP significantly increased the fluorescence intensity of 5-methylcytosine (5mC). The results from our RT-qPCR analysis demonstrated a significant decrease in the mRNA expression of the DNA methylation-related genes Dnmt1 and Dnmt3a, as well as the embryonic developmental potential-related genes Oct4 and Nanog, in porcine oocytes following exposure to MBP. Additionally, the mRNA expression of p53 significantly increased. Subsequently, the effects of MBP on early embryonic development were examined via parthenogenesis activation (PA) and in vitro fertilization (IVF). Exposure to MBP significantly impacted the development of embryos in both PA and IVF processes. The TUNEL staining data showed that MBP significantly increased embryonic apoptosis. However, Gly can ameliorate MBP-induced defects in oocyte epigenetic modifications and early embryonic development. •MBP exposure significantly compromised early embryonic evelopment in porcine.•Glycine rescues epigenetic modifications altered in porcine oocytesby MBP exposure.•Glycine mitigates the accumulation of DNA damage induced by MBPexposure in porcine oocytes.
ISSN:0890-6238
1873-1708
1873-1708
DOI:10.1016/j.reprotox.2024.108684