Water phase transition and signal nulling in 3D dual‐echo adiabatic inversion‐recovery UTE (IR‐UTE) imaging of myelin

Purpose The semisolid myelin sheath has very fast transverse relaxation and is invisible to conventional MRI sequences. UTE sequences can detect signal from myelin. The major challenge is the concurrent detection of various water components. Methods The inversion recovery (IR)–based UTE (IR‐UTE) seq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in medicine 2024-12, Vol.92 (6), p.2464-2472
Hauptverfasser: Athertya, Jiyo S., Shin, Soo Hyun, Malhi, Bhavsimran Singh, Lo, James, Sedaghat, Sam, Jang, Hyungseok, Ma, Yajun, Du, Jiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2472
container_issue 6
container_start_page 2464
container_title Magnetic resonance in medicine
container_volume 92
creator Athertya, Jiyo S.
Shin, Soo Hyun
Malhi, Bhavsimran Singh
Lo, James
Sedaghat, Sam
Jang, Hyungseok
Ma, Yajun
Du, Jiang
description Purpose The semisolid myelin sheath has very fast transverse relaxation and is invisible to conventional MRI sequences. UTE sequences can detect signal from myelin. The major challenge is the concurrent detection of various water components. Methods The inversion recovery (IR)–based UTE (IR‐UTE) sequence employs an adiabatic inversion pulse to invert and suppress water magnetizations. TI plays a key role in water suppression, with negative water magnetizations (negative phase) before the null point and positive water magnetizations (positive phase) after the null point. A series of dual‐echo IR‐UTE images were acquired with different TIs to detect water phase transition. The effects of TR in phase transition and water suppression were also investigated using a relatively long TR of 500 ms and a short TR of 106 ms. The water phase transition in dual‐echo IR‐UTE imaging of myelin was investigated in five ex vivo and five in vivo human brains. Results An apparent phase transition was observed in the second echo at the water signal null point, where the myelin signal was selectively detected by the UTE data acquisition at the optimal TI. The water phase transition point varied significantly across the brain when the long TR of 500 ms was used, whereas the convergence of TIs was observed when the short TR of 106 ms was used. Conclusion The results suggest that the IR‐UTE sequence with a short TR allows uniform inversion and nulling of water magnetizations, thereby providing volumetric imaging of myelin.
doi_str_mv 10.1002/mrm.30243
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3090949207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3090949207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2433-e215195fb795706c435431ee773c6373e766f761143300933031f9d43594df8f3</originalsourceid><addsrcrecordid>eNp1kctKxDAUhoMoOl4WvoAE3OiiY06TNmYp4xVGBFFclkx7OkZ6GZNWGdz4CD6jT-LRUReCm9zOdz44-RnbBjEEIeKD2tdDKWIll9gAkjiO4sSoZTYQWolIglFrbD2EByGEMVqtsjVpAMwhmAF7ubMdej67twF5520TXOfahtum4MFNG1vxpq8q10y5a7g85kVvq_fXN8zvW24LZye2cznVntAHaqSSx7yl25zf3pzwvYtreqLTPne1nX562pLXcyTlJlspbRVw63vfYLenJzej82h8dXYxOhpHOY0kI4whAZOUE20SLdJcyURJQNRa5qnUEnWaljoFIJgmpEVCaQrCjCrKw1JusL2Fd-bbxx5Dl9Uu5FhVtsG2D5kURhhlYqEJ3f2DPrS9p18gCkCAUjI1RO0vqNy3IXgss5mn6fw8A5F9JpJRItlXIsTufBv7SY3FL_kTAQEHC-DZVTj_35RdXl8ulB_4i5VJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110144369</pqid></control><display><type>article</type><title>Water phase transition and signal nulling in 3D dual‐echo adiabatic inversion‐recovery UTE (IR‐UTE) imaging of myelin</title><source>Access via Wiley Online Library</source><creator>Athertya, Jiyo S. ; Shin, Soo Hyun ; Malhi, Bhavsimran Singh ; Lo, James ; Sedaghat, Sam ; Jang, Hyungseok ; Ma, Yajun ; Du, Jiang</creator><creatorcontrib>Athertya, Jiyo S. ; Shin, Soo Hyun ; Malhi, Bhavsimran Singh ; Lo, James ; Sedaghat, Sam ; Jang, Hyungseok ; Ma, Yajun ; Du, Jiang</creatorcontrib><description>Purpose The semisolid myelin sheath has very fast transverse relaxation and is invisible to conventional MRI sequences. UTE sequences can detect signal from myelin. The major challenge is the concurrent detection of various water components. Methods The inversion recovery (IR)–based UTE (IR‐UTE) sequence employs an adiabatic inversion pulse to invert and suppress water magnetizations. TI plays a key role in water suppression, with negative water magnetizations (negative phase) before the null point and positive water magnetizations (positive phase) after the null point. A series of dual‐echo IR‐UTE images were acquired with different TIs to detect water phase transition. The effects of TR in phase transition and water suppression were also investigated using a relatively long TR of 500 ms and a short TR of 106 ms. The water phase transition in dual‐echo IR‐UTE imaging of myelin was investigated in five ex vivo and five in vivo human brains. Results An apparent phase transition was observed in the second echo at the water signal null point, where the myelin signal was selectively detected by the UTE data acquisition at the optimal TI. The water phase transition point varied significantly across the brain when the long TR of 500 ms was used, whereas the convergence of TIs was observed when the short TR of 106 ms was used. Conclusion The results suggest that the IR‐UTE sequence with a short TR allows uniform inversion and nulling of water magnetizations, thereby providing volumetric imaging of myelin.</description><identifier>ISSN: 0740-3194</identifier><identifier>ISSN: 1522-2594</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.30243</identifier><identifier>PMID: 39119819</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Adiabatic ; Adiabatic flow ; Data acquisition ; Image acquisition ; In vivo methods and tests ; Medical imaging ; MRI ; Multiple sclerosis ; Myelin ; Neuroimaging ; phase transition ; Phase transitions ; Recovery ; Semisolids ; Sequences ; Sheaths ; Transition points ; UTE ; Water ; white matter</subject><ispartof>Magnetic resonance in medicine, 2024-12, Vol.92 (6), p.2464-2472</ispartof><rights>2024 International Society for Magnetic Resonance in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2433-e215195fb795706c435431ee773c6373e766f761143300933031f9d43594df8f3</cites><orcidid>0000-0003-1875-2908 ; 0000-0002-0866-1052 ; 0000-0003-0830-9232 ; 0000-0002-3597-9525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.30243$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.30243$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39119819$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Athertya, Jiyo S.</creatorcontrib><creatorcontrib>Shin, Soo Hyun</creatorcontrib><creatorcontrib>Malhi, Bhavsimran Singh</creatorcontrib><creatorcontrib>Lo, James</creatorcontrib><creatorcontrib>Sedaghat, Sam</creatorcontrib><creatorcontrib>Jang, Hyungseok</creatorcontrib><creatorcontrib>Ma, Yajun</creatorcontrib><creatorcontrib>Du, Jiang</creatorcontrib><title>Water phase transition and signal nulling in 3D dual‐echo adiabatic inversion‐recovery UTE (IR‐UTE) imaging of myelin</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose The semisolid myelin sheath has very fast transverse relaxation and is invisible to conventional MRI sequences. UTE sequences can detect signal from myelin. The major challenge is the concurrent detection of various water components. Methods The inversion recovery (IR)–based UTE (IR‐UTE) sequence employs an adiabatic inversion pulse to invert and suppress water magnetizations. TI plays a key role in water suppression, with negative water magnetizations (negative phase) before the null point and positive water magnetizations (positive phase) after the null point. A series of dual‐echo IR‐UTE images were acquired with different TIs to detect water phase transition. The effects of TR in phase transition and water suppression were also investigated using a relatively long TR of 500 ms and a short TR of 106 ms. The water phase transition in dual‐echo IR‐UTE imaging of myelin was investigated in five ex vivo and five in vivo human brains. Results An apparent phase transition was observed in the second echo at the water signal null point, where the myelin signal was selectively detected by the UTE data acquisition at the optimal TI. The water phase transition point varied significantly across the brain when the long TR of 500 ms was used, whereas the convergence of TIs was observed when the short TR of 106 ms was used. Conclusion The results suggest that the IR‐UTE sequence with a short TR allows uniform inversion and nulling of water magnetizations, thereby providing volumetric imaging of myelin.</description><subject>Adiabatic</subject><subject>Adiabatic flow</subject><subject>Data acquisition</subject><subject>Image acquisition</subject><subject>In vivo methods and tests</subject><subject>Medical imaging</subject><subject>MRI</subject><subject>Multiple sclerosis</subject><subject>Myelin</subject><subject>Neuroimaging</subject><subject>phase transition</subject><subject>Phase transitions</subject><subject>Recovery</subject><subject>Semisolids</subject><subject>Sequences</subject><subject>Sheaths</subject><subject>Transition points</subject><subject>UTE</subject><subject>Water</subject><subject>white matter</subject><issn>0740-3194</issn><issn>1522-2594</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kctKxDAUhoMoOl4WvoAE3OiiY06TNmYp4xVGBFFclkx7OkZ6GZNWGdz4CD6jT-LRUReCm9zOdz44-RnbBjEEIeKD2tdDKWIll9gAkjiO4sSoZTYQWolIglFrbD2EByGEMVqtsjVpAMwhmAF7ubMdej67twF5520TXOfahtum4MFNG1vxpq8q10y5a7g85kVvq_fXN8zvW24LZye2cznVntAHaqSSx7yl25zf3pzwvYtreqLTPne1nX562pLXcyTlJlspbRVw63vfYLenJzej82h8dXYxOhpHOY0kI4whAZOUE20SLdJcyURJQNRa5qnUEnWaljoFIJgmpEVCaQrCjCrKw1JusL2Fd-bbxx5Dl9Uu5FhVtsG2D5kURhhlYqEJ3f2DPrS9p18gCkCAUjI1RO0vqNy3IXgss5mn6fw8A5F9JpJRItlXIsTufBv7SY3FL_kTAQEHC-DZVTj_35RdXl8ulB_4i5VJ</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Athertya, Jiyo S.</creator><creator>Shin, Soo Hyun</creator><creator>Malhi, Bhavsimran Singh</creator><creator>Lo, James</creator><creator>Sedaghat, Sam</creator><creator>Jang, Hyungseok</creator><creator>Ma, Yajun</creator><creator>Du, Jiang</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1875-2908</orcidid><orcidid>https://orcid.org/0000-0002-0866-1052</orcidid><orcidid>https://orcid.org/0000-0003-0830-9232</orcidid><orcidid>https://orcid.org/0000-0002-3597-9525</orcidid></search><sort><creationdate>202412</creationdate><title>Water phase transition and signal nulling in 3D dual‐echo adiabatic inversion‐recovery UTE (IR‐UTE) imaging of myelin</title><author>Athertya, Jiyo S. ; Shin, Soo Hyun ; Malhi, Bhavsimran Singh ; Lo, James ; Sedaghat, Sam ; Jang, Hyungseok ; Ma, Yajun ; Du, Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2433-e215195fb795706c435431ee773c6373e766f761143300933031f9d43594df8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adiabatic</topic><topic>Adiabatic flow</topic><topic>Data acquisition</topic><topic>Image acquisition</topic><topic>In vivo methods and tests</topic><topic>Medical imaging</topic><topic>MRI</topic><topic>Multiple sclerosis</topic><topic>Myelin</topic><topic>Neuroimaging</topic><topic>phase transition</topic><topic>Phase transitions</topic><topic>Recovery</topic><topic>Semisolids</topic><topic>Sequences</topic><topic>Sheaths</topic><topic>Transition points</topic><topic>UTE</topic><topic>Water</topic><topic>white matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Athertya, Jiyo S.</creatorcontrib><creatorcontrib>Shin, Soo Hyun</creatorcontrib><creatorcontrib>Malhi, Bhavsimran Singh</creatorcontrib><creatorcontrib>Lo, James</creatorcontrib><creatorcontrib>Sedaghat, Sam</creatorcontrib><creatorcontrib>Jang, Hyungseok</creatorcontrib><creatorcontrib>Ma, Yajun</creatorcontrib><creatorcontrib>Du, Jiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Athertya, Jiyo S.</au><au>Shin, Soo Hyun</au><au>Malhi, Bhavsimran Singh</au><au>Lo, James</au><au>Sedaghat, Sam</au><au>Jang, Hyungseok</au><au>Ma, Yajun</au><au>Du, Jiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water phase transition and signal nulling in 3D dual‐echo adiabatic inversion‐recovery UTE (IR‐UTE) imaging of myelin</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2024-12</date><risdate>2024</risdate><volume>92</volume><issue>6</issue><spage>2464</spage><epage>2472</epage><pages>2464-2472</pages><issn>0740-3194</issn><issn>1522-2594</issn><eissn>1522-2594</eissn><abstract>Purpose The semisolid myelin sheath has very fast transverse relaxation and is invisible to conventional MRI sequences. UTE sequences can detect signal from myelin. The major challenge is the concurrent detection of various water components. Methods The inversion recovery (IR)–based UTE (IR‐UTE) sequence employs an adiabatic inversion pulse to invert and suppress water magnetizations. TI plays a key role in water suppression, with negative water magnetizations (negative phase) before the null point and positive water magnetizations (positive phase) after the null point. A series of dual‐echo IR‐UTE images were acquired with different TIs to detect water phase transition. The effects of TR in phase transition and water suppression were also investigated using a relatively long TR of 500 ms and a short TR of 106 ms. The water phase transition in dual‐echo IR‐UTE imaging of myelin was investigated in five ex vivo and five in vivo human brains. Results An apparent phase transition was observed in the second echo at the water signal null point, where the myelin signal was selectively detected by the UTE data acquisition at the optimal TI. The water phase transition point varied significantly across the brain when the long TR of 500 ms was used, whereas the convergence of TIs was observed when the short TR of 106 ms was used. Conclusion The results suggest that the IR‐UTE sequence with a short TR allows uniform inversion and nulling of water magnetizations, thereby providing volumetric imaging of myelin.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39119819</pmid><doi>10.1002/mrm.30243</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1875-2908</orcidid><orcidid>https://orcid.org/0000-0002-0866-1052</orcidid><orcidid>https://orcid.org/0000-0003-0830-9232</orcidid><orcidid>https://orcid.org/0000-0002-3597-9525</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2024-12, Vol.92 (6), p.2464-2472
issn 0740-3194
1522-2594
1522-2594
language eng
recordid cdi_proquest_miscellaneous_3090949207
source Access via Wiley Online Library
subjects Adiabatic
Adiabatic flow
Data acquisition
Image acquisition
In vivo methods and tests
Medical imaging
MRI
Multiple sclerosis
Myelin
Neuroimaging
phase transition
Phase transitions
Recovery
Semisolids
Sequences
Sheaths
Transition points
UTE
Water
white matter
title Water phase transition and signal nulling in 3D dual‐echo adiabatic inversion‐recovery UTE (IR‐UTE) imaging of myelin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A41%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20phase%20transition%20and%20signal%20nulling%20in%203D%20dual%E2%80%90echo%20adiabatic%20inversion%E2%80%90recovery%20UTE%20(IR%E2%80%90UTE)%20imaging%20of%20myelin&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Athertya,%20Jiyo%20S.&rft.date=2024-12&rft.volume=92&rft.issue=6&rft.spage=2464&rft.epage=2472&rft.pages=2464-2472&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.30243&rft_dat=%3Cproquest_cross%3E3090949207%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110144369&rft_id=info:pmid/39119819&rfr_iscdi=true