Water phase transition and signal nulling in 3D dual‐echo adiabatic inversion‐recovery UTE (IR‐UTE) imaging of myelin
Purpose The semisolid myelin sheath has very fast transverse relaxation and is invisible to conventional MRI sequences. UTE sequences can detect signal from myelin. The major challenge is the concurrent detection of various water components. Methods The inversion recovery (IR)–based UTE (IR‐UTE) seq...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 2024-12, Vol.92 (6), p.2464-2472 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2472 |
---|---|
container_issue | 6 |
container_start_page | 2464 |
container_title | Magnetic resonance in medicine |
container_volume | 92 |
creator | Athertya, Jiyo S. Shin, Soo Hyun Malhi, Bhavsimran Singh Lo, James Sedaghat, Sam Jang, Hyungseok Ma, Yajun Du, Jiang |
description | Purpose
The semisolid myelin sheath has very fast transverse relaxation and is invisible to conventional MRI sequences. UTE sequences can detect signal from myelin. The major challenge is the concurrent detection of various water components.
Methods
The inversion recovery (IR)–based UTE (IR‐UTE) sequence employs an adiabatic inversion pulse to invert and suppress water magnetizations. TI plays a key role in water suppression, with negative water magnetizations (negative phase) before the null point and positive water magnetizations (positive phase) after the null point. A series of dual‐echo IR‐UTE images were acquired with different TIs to detect water phase transition. The effects of TR in phase transition and water suppression were also investigated using a relatively long TR of 500 ms and a short TR of 106 ms. The water phase transition in dual‐echo IR‐UTE imaging of myelin was investigated in five ex vivo and five in vivo human brains.
Results
An apparent phase transition was observed in the second echo at the water signal null point, where the myelin signal was selectively detected by the UTE data acquisition at the optimal TI. The water phase transition point varied significantly across the brain when the long TR of 500 ms was used, whereas the convergence of TIs was observed when the short TR of 106 ms was used.
Conclusion
The results suggest that the IR‐UTE sequence with a short TR allows uniform inversion and nulling of water magnetizations, thereby providing volumetric imaging of myelin. |
doi_str_mv | 10.1002/mrm.30243 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3090949207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3090949207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2433-e215195fb795706c435431ee773c6373e766f761143300933031f9d43594df8f3</originalsourceid><addsrcrecordid>eNp1kctKxDAUhoMoOl4WvoAE3OiiY06TNmYp4xVGBFFclkx7OkZ6GZNWGdz4CD6jT-LRUReCm9zOdz44-RnbBjEEIeKD2tdDKWIll9gAkjiO4sSoZTYQWolIglFrbD2EByGEMVqtsjVpAMwhmAF7ubMdej67twF5520TXOfahtum4MFNG1vxpq8q10y5a7g85kVvq_fXN8zvW24LZye2cznVntAHaqSSx7yl25zf3pzwvYtreqLTPne1nX562pLXcyTlJlspbRVw63vfYLenJzej82h8dXYxOhpHOY0kI4whAZOUE20SLdJcyURJQNRa5qnUEnWaljoFIJgmpEVCaQrCjCrKw1JusL2Fd-bbxx5Dl9Uu5FhVtsG2D5kURhhlYqEJ3f2DPrS9p18gCkCAUjI1RO0vqNy3IXgss5mn6fw8A5F9JpJRItlXIsTufBv7SY3FL_kTAQEHC-DZVTj_35RdXl8ulB_4i5VJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110144369</pqid></control><display><type>article</type><title>Water phase transition and signal nulling in 3D dual‐echo adiabatic inversion‐recovery UTE (IR‐UTE) imaging of myelin</title><source>Access via Wiley Online Library</source><creator>Athertya, Jiyo S. ; Shin, Soo Hyun ; Malhi, Bhavsimran Singh ; Lo, James ; Sedaghat, Sam ; Jang, Hyungseok ; Ma, Yajun ; Du, Jiang</creator><creatorcontrib>Athertya, Jiyo S. ; Shin, Soo Hyun ; Malhi, Bhavsimran Singh ; Lo, James ; Sedaghat, Sam ; Jang, Hyungseok ; Ma, Yajun ; Du, Jiang</creatorcontrib><description>Purpose
The semisolid myelin sheath has very fast transverse relaxation and is invisible to conventional MRI sequences. UTE sequences can detect signal from myelin. The major challenge is the concurrent detection of various water components.
Methods
The inversion recovery (IR)–based UTE (IR‐UTE) sequence employs an adiabatic inversion pulse to invert and suppress water magnetizations. TI plays a key role in water suppression, with negative water magnetizations (negative phase) before the null point and positive water magnetizations (positive phase) after the null point. A series of dual‐echo IR‐UTE images were acquired with different TIs to detect water phase transition. The effects of TR in phase transition and water suppression were also investigated using a relatively long TR of 500 ms and a short TR of 106 ms. The water phase transition in dual‐echo IR‐UTE imaging of myelin was investigated in five ex vivo and five in vivo human brains.
Results
An apparent phase transition was observed in the second echo at the water signal null point, where the myelin signal was selectively detected by the UTE data acquisition at the optimal TI. The water phase transition point varied significantly across the brain when the long TR of 500 ms was used, whereas the convergence of TIs was observed when the short TR of 106 ms was used.
Conclusion
The results suggest that the IR‐UTE sequence with a short TR allows uniform inversion and nulling of water magnetizations, thereby providing volumetric imaging of myelin.</description><identifier>ISSN: 0740-3194</identifier><identifier>ISSN: 1522-2594</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.30243</identifier><identifier>PMID: 39119819</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Adiabatic ; Adiabatic flow ; Data acquisition ; Image acquisition ; In vivo methods and tests ; Medical imaging ; MRI ; Multiple sclerosis ; Myelin ; Neuroimaging ; phase transition ; Phase transitions ; Recovery ; Semisolids ; Sequences ; Sheaths ; Transition points ; UTE ; Water ; white matter</subject><ispartof>Magnetic resonance in medicine, 2024-12, Vol.92 (6), p.2464-2472</ispartof><rights>2024 International Society for Magnetic Resonance in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2433-e215195fb795706c435431ee773c6373e766f761143300933031f9d43594df8f3</cites><orcidid>0000-0003-1875-2908 ; 0000-0002-0866-1052 ; 0000-0003-0830-9232 ; 0000-0002-3597-9525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrm.30243$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrm.30243$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39119819$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Athertya, Jiyo S.</creatorcontrib><creatorcontrib>Shin, Soo Hyun</creatorcontrib><creatorcontrib>Malhi, Bhavsimran Singh</creatorcontrib><creatorcontrib>Lo, James</creatorcontrib><creatorcontrib>Sedaghat, Sam</creatorcontrib><creatorcontrib>Jang, Hyungseok</creatorcontrib><creatorcontrib>Ma, Yajun</creatorcontrib><creatorcontrib>Du, Jiang</creatorcontrib><title>Water phase transition and signal nulling in 3D dual‐echo adiabatic inversion‐recovery UTE (IR‐UTE) imaging of myelin</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose
The semisolid myelin sheath has very fast transverse relaxation and is invisible to conventional MRI sequences. UTE sequences can detect signal from myelin. The major challenge is the concurrent detection of various water components.
Methods
The inversion recovery (IR)–based UTE (IR‐UTE) sequence employs an adiabatic inversion pulse to invert and suppress water magnetizations. TI plays a key role in water suppression, with negative water magnetizations (negative phase) before the null point and positive water magnetizations (positive phase) after the null point. A series of dual‐echo IR‐UTE images were acquired with different TIs to detect water phase transition. The effects of TR in phase transition and water suppression were also investigated using a relatively long TR of 500 ms and a short TR of 106 ms. The water phase transition in dual‐echo IR‐UTE imaging of myelin was investigated in five ex vivo and five in vivo human brains.
Results
An apparent phase transition was observed in the second echo at the water signal null point, where the myelin signal was selectively detected by the UTE data acquisition at the optimal TI. The water phase transition point varied significantly across the brain when the long TR of 500 ms was used, whereas the convergence of TIs was observed when the short TR of 106 ms was used.
Conclusion
The results suggest that the IR‐UTE sequence with a short TR allows uniform inversion and nulling of water magnetizations, thereby providing volumetric imaging of myelin.</description><subject>Adiabatic</subject><subject>Adiabatic flow</subject><subject>Data acquisition</subject><subject>Image acquisition</subject><subject>In vivo methods and tests</subject><subject>Medical imaging</subject><subject>MRI</subject><subject>Multiple sclerosis</subject><subject>Myelin</subject><subject>Neuroimaging</subject><subject>phase transition</subject><subject>Phase transitions</subject><subject>Recovery</subject><subject>Semisolids</subject><subject>Sequences</subject><subject>Sheaths</subject><subject>Transition points</subject><subject>UTE</subject><subject>Water</subject><subject>white matter</subject><issn>0740-3194</issn><issn>1522-2594</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kctKxDAUhoMoOl4WvoAE3OiiY06TNmYp4xVGBFFclkx7OkZ6GZNWGdz4CD6jT-LRUReCm9zOdz44-RnbBjEEIeKD2tdDKWIll9gAkjiO4sSoZTYQWolIglFrbD2EByGEMVqtsjVpAMwhmAF7ubMdej67twF5520TXOfahtum4MFNG1vxpq8q10y5a7g85kVvq_fXN8zvW24LZye2cznVntAHaqSSx7yl25zf3pzwvYtreqLTPne1nX562pLXcyTlJlspbRVw63vfYLenJzej82h8dXYxOhpHOY0kI4whAZOUE20SLdJcyURJQNRa5qnUEnWaljoFIJgmpEVCaQrCjCrKw1JusL2Fd-bbxx5Dl9Uu5FhVtsG2D5kURhhlYqEJ3f2DPrS9p18gCkCAUjI1RO0vqNy3IXgss5mn6fw8A5F9JpJRItlXIsTufBv7SY3FL_kTAQEHC-DZVTj_35RdXl8ulB_4i5VJ</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Athertya, Jiyo S.</creator><creator>Shin, Soo Hyun</creator><creator>Malhi, Bhavsimran Singh</creator><creator>Lo, James</creator><creator>Sedaghat, Sam</creator><creator>Jang, Hyungseok</creator><creator>Ma, Yajun</creator><creator>Du, Jiang</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1875-2908</orcidid><orcidid>https://orcid.org/0000-0002-0866-1052</orcidid><orcidid>https://orcid.org/0000-0003-0830-9232</orcidid><orcidid>https://orcid.org/0000-0002-3597-9525</orcidid></search><sort><creationdate>202412</creationdate><title>Water phase transition and signal nulling in 3D dual‐echo adiabatic inversion‐recovery UTE (IR‐UTE) imaging of myelin</title><author>Athertya, Jiyo S. ; Shin, Soo Hyun ; Malhi, Bhavsimran Singh ; Lo, James ; Sedaghat, Sam ; Jang, Hyungseok ; Ma, Yajun ; Du, Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2433-e215195fb795706c435431ee773c6373e766f761143300933031f9d43594df8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adiabatic</topic><topic>Adiabatic flow</topic><topic>Data acquisition</topic><topic>Image acquisition</topic><topic>In vivo methods and tests</topic><topic>Medical imaging</topic><topic>MRI</topic><topic>Multiple sclerosis</topic><topic>Myelin</topic><topic>Neuroimaging</topic><topic>phase transition</topic><topic>Phase transitions</topic><topic>Recovery</topic><topic>Semisolids</topic><topic>Sequences</topic><topic>Sheaths</topic><topic>Transition points</topic><topic>UTE</topic><topic>Water</topic><topic>white matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Athertya, Jiyo S.</creatorcontrib><creatorcontrib>Shin, Soo Hyun</creatorcontrib><creatorcontrib>Malhi, Bhavsimran Singh</creatorcontrib><creatorcontrib>Lo, James</creatorcontrib><creatorcontrib>Sedaghat, Sam</creatorcontrib><creatorcontrib>Jang, Hyungseok</creatorcontrib><creatorcontrib>Ma, Yajun</creatorcontrib><creatorcontrib>Du, Jiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Athertya, Jiyo S.</au><au>Shin, Soo Hyun</au><au>Malhi, Bhavsimran Singh</au><au>Lo, James</au><au>Sedaghat, Sam</au><au>Jang, Hyungseok</au><au>Ma, Yajun</au><au>Du, Jiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water phase transition and signal nulling in 3D dual‐echo adiabatic inversion‐recovery UTE (IR‐UTE) imaging of myelin</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2024-12</date><risdate>2024</risdate><volume>92</volume><issue>6</issue><spage>2464</spage><epage>2472</epage><pages>2464-2472</pages><issn>0740-3194</issn><issn>1522-2594</issn><eissn>1522-2594</eissn><abstract>Purpose
The semisolid myelin sheath has very fast transverse relaxation and is invisible to conventional MRI sequences. UTE sequences can detect signal from myelin. The major challenge is the concurrent detection of various water components.
Methods
The inversion recovery (IR)–based UTE (IR‐UTE) sequence employs an adiabatic inversion pulse to invert and suppress water magnetizations. TI plays a key role in water suppression, with negative water magnetizations (negative phase) before the null point and positive water magnetizations (positive phase) after the null point. A series of dual‐echo IR‐UTE images were acquired with different TIs to detect water phase transition. The effects of TR in phase transition and water suppression were also investigated using a relatively long TR of 500 ms and a short TR of 106 ms. The water phase transition in dual‐echo IR‐UTE imaging of myelin was investigated in five ex vivo and five in vivo human brains.
Results
An apparent phase transition was observed in the second echo at the water signal null point, where the myelin signal was selectively detected by the UTE data acquisition at the optimal TI. The water phase transition point varied significantly across the brain when the long TR of 500 ms was used, whereas the convergence of TIs was observed when the short TR of 106 ms was used.
Conclusion
The results suggest that the IR‐UTE sequence with a short TR allows uniform inversion and nulling of water magnetizations, thereby providing volumetric imaging of myelin.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39119819</pmid><doi>10.1002/mrm.30243</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1875-2908</orcidid><orcidid>https://orcid.org/0000-0002-0866-1052</orcidid><orcidid>https://orcid.org/0000-0003-0830-9232</orcidid><orcidid>https://orcid.org/0000-0002-3597-9525</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2024-12, Vol.92 (6), p.2464-2472 |
issn | 0740-3194 1522-2594 1522-2594 |
language | eng |
recordid | cdi_proquest_miscellaneous_3090949207 |
source | Access via Wiley Online Library |
subjects | Adiabatic Adiabatic flow Data acquisition Image acquisition In vivo methods and tests Medical imaging MRI Multiple sclerosis Myelin Neuroimaging phase transition Phase transitions Recovery Semisolids Sequences Sheaths Transition points UTE Water white matter |
title | Water phase transition and signal nulling in 3D dual‐echo adiabatic inversion‐recovery UTE (IR‐UTE) imaging of myelin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A41%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20phase%20transition%20and%20signal%20nulling%20in%203D%20dual%E2%80%90echo%20adiabatic%20inversion%E2%80%90recovery%20UTE%20(IR%E2%80%90UTE)%20imaging%20of%20myelin&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Athertya,%20Jiyo%20S.&rft.date=2024-12&rft.volume=92&rft.issue=6&rft.spage=2464&rft.epage=2472&rft.pages=2464-2472&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.30243&rft_dat=%3Cproquest_cross%3E3090949207%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110144369&rft_id=info:pmid/39119819&rfr_iscdi=true |