Metabolic states influence chicken retinal pigment epithelium cell fate decisions

During tissue regeneration, proliferation, dedifferentiation and reprogramming are necessary to restore lost structures. However, it is not fully understood how metabolism intersects with these processes. Chicken embryos can regenerate their retina through retinal pigment epithelium (RPE) reprogramm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Development (Cambridge) 2024-08, Vol.151 (15)
Hauptverfasser: Perez-Estrada, J Raúl, Tangeman, Jared A, Proto-Newton, Maeve, Sanaka, Harshavardhan, Smucker, Byran, Del Rio-Tsonis, Katia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During tissue regeneration, proliferation, dedifferentiation and reprogramming are necessary to restore lost structures. However, it is not fully understood how metabolism intersects with these processes. Chicken embryos can regenerate their retina through retinal pigment epithelium (RPE) reprogramming when treated with fibroblast factor 2 (FGF2). Using transcriptome profiling, we uncovered extensive regulation of gene sets pertaining to proliferation, neurogenesis and glycolysis throughout RPE-to-neural retina reprogramming. By manipulating cell media composition, we determined that glucose, glutamine or pyruvate are individually sufficient to support RPE reprogramming, identifying glycolysis as a requisite. Conversely, the activation of pyruvate dehydrogenase by inhibition of pyruvate dehydrogenase kinases, induces epithelial-to-mesenchymal transition, while simultaneously blocking the activation of neural retina fate. We also identified that epithelial-to-mesenchymal transition fate is partially driven by an oxidative environment. Our findings provide evidence that metabolism controls RPE cell fate decisions and provide insights into the metabolic state of RPE cells, which are prone to fate changes in regeneration and pathologies, such as proliferative vitreoretinopathy.
ISSN:0950-1991
1477-9129
1477-9129
DOI:10.1242/dev.202462