Coptisine alleviates colitis through modulating gut microbiota and inhibiting TXNIP/NLRP3 inflammasome
Ulcerative colitis (UC) is a disease involving the enteric canal which is characterised by chronisch inflammatory reaction. Coptisine (COP), the distinctive component of Coptis chinensis Franch., is famous for its anti-inflammation, antioxidation, anti-bacteria, and anti-cancer. Earlier researches c...
Gespeichert in:
Veröffentlicht in: | Journal of ethnopharmacology 2024-12, Vol.335, p.118680, Article 118680 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ulcerative colitis (UC) is a disease involving the enteric canal which is characterised by chronisch inflammatory reaction. Coptisine (COP), the distinctive component of Coptis chinensis Franch., is famous for its anti-inflammation, antioxidation, anti-bacteria, and anti-cancer. Earlier researches certified that COP is a prospective remedy for colitis, but the mechanism of colitis and the therapeutical target of COP are deficiently elucidated.
In this follow-up study, we adopted dextran sulfate sodium (DSS)-elicited UC model to further elucidate the possible mechanism of COP on UC in mice.
COP and the positive drug sulfasalazine (SASP) were administered by oral gavage in DSS-induced colitis mouse model. Oxidative stress, inflammatory cytokines, intestinal barrier permeability, protein expression of the TXNIP/NLRP3 inflammasome pathway and intestinal microbiome structure were assessed.
Among this investigation, our team discovered that COP could mitigate DSS-elicited UC in murines, with prominent amelioration in weight loss, disease activity index, intestinal permeability (serum diamine oxidase and D-lactate), contracted colonal length and histologic alterations. Furthermore, COP greatly lowered the generation of pro-inflammatory factors, malondialdehyde (MDA) activity and reactive oxygen species (ROS) level, while increased superoxide dismutase (SOD) activity in colonal tissues. Additionally, COP downmodulated the proteic expressions of thioredoxin-interacting protein (TXNIP), NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), caspase-1, IL-1β and IL-18. Enteric microbiome sequencing displayed that DSS and COP tremendously influenced the constitution and diversity of enteric microbes in DSS-elicited UC murines. Besides, COP elevated the abundance of probiotic bacteria Bacteroidota, Akkermansia_muciniphila and Bacteroides_acidifaciens, lowered the proportions of potential pathogenic bacteria, such as Lachnospiraceae, Acetatifactor_muris, Clostridium_XlVa, Alistipes and Oscillibacter, and reduced the ratio of Bacillota/Bacteroidota, which vastly helped to reverse the enteric microbiome to a balanceable condition. Alterations in these bacteria were strongly correlated with the colitis relative index.
The mechanism of COP against UC is connected with the suppression of TXNIP/NLRP3 inflammasome signalling pathway and the adjustment of the enteric microbiome profiles. The proofs offer new understandings upon the anti-UC function |
---|---|
ISSN: | 0378-8741 1872-7573 1872-7573 |
DOI: | 10.1016/j.jep.2024.118680 |