Ultrarobust, Self-Healing Poly(urethane-urea) Elastomer with Superior Tensile Strength and Intrinsic Flame Retardancy Enabled by Coordination Cross-Linking

Poly­(urethane-urea) elastomers (PUUEs) have gained significant attention recently due to their growing demand in electronic skin, wearable electronic devices, and aerospace applications. The practical implementation of these elastomers necessitates many exceptional properties to ensure robust and s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-08, Vol.16 (33), p.43979-43990
Hauptverfasser: Luo, Yuxin, Tan, Meiyan, Shin, Jaeman, Zhang, Cheng, Yang, Shiyuan, Song, Ningning, Zhang, Wenchao, Jiao, Yunhong, Xie, Jixing, Geng, Zhishuai, He, Jiyu, Xia, Min, Xu, Jianzhong, Yang, Rongjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Poly­(urethane-urea) elastomers (PUUEs) have gained significant attention recently due to their growing demand in electronic skin, wearable electronic devices, and aerospace applications. The practical implementation of these elastomers necessitates many exceptional properties to ensure robust and safe utilization. However, achieving an optimal balance between high mechanical strength, good self-healing at moderate temperatures, and efficient flame retardancy for poly­(urethane-urea) elastomers remains a formidable challenge. In this study, we incorporated metal coordination bonds and flame-retarding phosphinate groups into the design of poly­(urethane-urea) simultaneously, resulting in a high-strength, self-healing, and flame-retardant elastomer, termed PNPU-2%Zn. Additional supramolecular cross-links and plasticizing effects of phosphinate-endowed PUUEs with relatively remarkable tensile strength (20.9 MPa), high elastic modulus (10.8 MPa), and exceptional self-healing efficiency (above 97%). Besides, PNPU-2%Zn possessed self-extinguishing characteristics with a limiting oxygen index (LOI) of 26.5%. Such an elastomer with superior properties can resist both mechanical fracture and fire hazards, providing insights into the development of robust and high-performance components for applications in wearable electronic devices.
ISSN:1944-8244
1944-8252
1944-8252
DOI:10.1021/acsami.4c08185