Morin overcomes doxorubicin resistance in human breast cancer by inducing DNA damage and modulating the LKB1/AMPK/mTORC1 signaling pathway
Breast cancer chemoresistance hampers chemotherapy efficacy; researchers investigate the pharmacological activities of natural products for potential solutions. This study aimed to determine the effect of morin, a bioflavonoid isolated from Maclura pomifera, on two Dox-resistant human breast cancer...
Gespeichert in:
Veröffentlicht in: | BioFactors (Oxford) 2024-08 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Breast cancer chemoresistance hampers chemotherapy efficacy; researchers investigate the pharmacological activities of natural products for potential solutions. This study aimed to determine the effect of morin, a bioflavonoid isolated from Maclura pomifera, on two Dox-resistant human breast cancer cell lines MDA-MB-231 (MDA-DR) and MCF-7 (MCF-DR). Sulforhodamine B and colony-forming assays demonstrated the cytotoxic effect of morin on both cell lines. Morin induced DNA damage and reduced the DNA repair mechanism, a feature of chemoresistance. In addition, morin reduced the protein expressions of cell cycle regulators, such as cyclin D1, CDK4, cyclin E1, cyclin B1, and p-Rb, thereby halting cell cycle progression. Moreover, morin slightly reduced PARP and Bcl-xL expressions but left LC3-II and RIPK3 expressions unchanged. Annexin-V/7-AAD analysis showed morin increased 7-AAD positive cells and annexin-V positive cells among MDA-DR and MCF-DR cells, respectively. In addition, morin increased p-AMPK and p-LKB1 levels; and, thus, inhibited phosphorylation of the mTOR pathway, but decreased t-AMPK levels by inducing lysosomal degradation, and AICAR, an AMPK activator, reduced Raptor, cyclin D1, CDK4, cyclin E1 and phosphorylated, and total mTOR levels, indicating AMPK is a key player in inducing cell death. Also, morin modulated MAPK phosphorylation and attenuated p-Akt and p-GSK3αβ levels; and thus, inhibited cell survival. In addition, morin suppressed tumor growth in our MDA-DR xenografted mouse model. These findings indicate that morin is a potential treatment for Dox-resistant breast cancer and that it does so by inducing DNA damage and modulating the LKB1/AMPK/mTORC1 pathway, along with regulating the MAPK, and Akt/GSK3αβ signaling pathways. |
---|---|
ISSN: | 0951-6433 1872-8081 1872-8081 |
DOI: | 10.1002/biof.2112 |