Secondary failure of lentiviral vector gene therapy in a cerebral adrenoleukodystrophy patient with an ABCD1 whole-gene deletion
A 9-year-old boy with adrenoleukodystrophy due to ABCD1 whole-gene deletion was diagnosed with active cerebral adrenoleukodystrophy characterized by demyelination and gadolinium enhancement on brain MRI. He underwent hematopoietic cell transplant (HCT) with autologous CD34+ cells transduced with an...
Gespeichert in:
Veröffentlicht in: | Molecular therapy 2024-10, Vol.32 (10), p.3313-3317 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A 9-year-old boy with adrenoleukodystrophy due to ABCD1 whole-gene deletion was diagnosed with active cerebral adrenoleukodystrophy characterized by demyelination and gadolinium enhancement on brain MRI. He underwent hematopoietic cell transplant (HCT) with autologous CD34+ cells transduced with an ABCD1-expressing lentiviral vector (eli-cel [elivaldogene autotemcel]) as part of the ALD-104 clinical trial. Fifty days after HCT, the patient’s MRI showed gadolinium resolution; the whole-blood vector copy number (VCN) was 0.666 copies/mL. Six months following HCT, an MRI showed re-emergence of gadolinium enhancement; the VCN had decreased to 0.029 copies/mL. Polyclonal antibodies to the ABCD1 gene product were detectable 9 months after transplant, showing reactivity to peroxisomes, suggesting an immune response; however, no antibody binding to human CD34+ cells could be shown. The patient underwent a successful allogeneic HCT 12 months after gene therapy with resultant gadolinium resolution, cerebral disease stabilization, and the disappearance of antibodies. The coincident VCN loss and appearance of antibody to the ABCD1 gene product is of interest, and we postulate that it is related to the patient’s whole ABCD1 gene deletion. We suggest close monitoring of loss of gene therapy efficacy due to immune response in patients with full deletions who are considering gene therapy.
[Display omitted]
Lund and colleagues found that autologous hematopoietic stem cell gene correction to treat single-gene deletions can lead to potential autoimmune/antibody development to the gene of interest, as the new gene is not recognized as “self,” and monitoring for this phenomenon is advised. |
---|---|
ISSN: | 1525-0016 1525-0024 1525-0024 |
DOI: | 10.1016/j.ymthe.2024.08.005 |