Dietary capsaicin attenuates cardiac injury after myocardial infarction in type 2 diabetic mice by inhibiting ferroptosis through activation of TRPV1 and Nrf2/HMOX1 pathway

•Type 2 diabetes mellitus exacerbates cardiac injury after myocardial infarction in mice.•Dietary capsaicin attenuates cardiac injury after myocardial infarction in type 2 diabetic mice.•Capsaicin may inhibit ferroptosis through activation of TRPV1 and Nrf2/HMOX1 pathway. Type 2 diabetes mellitus (T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International immunopharmacology 2024-10, Vol.140, p.112852, Article 112852
Hauptverfasser: Yang, Chen, Guo, Wenli, He, Ruilin, Meng, Xudong, Fu, Jiajing, Lu, Yao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Type 2 diabetes mellitus exacerbates cardiac injury after myocardial infarction in mice.•Dietary capsaicin attenuates cardiac injury after myocardial infarction in type 2 diabetic mice.•Capsaicin may inhibit ferroptosis through activation of TRPV1 and Nrf2/HMOX1 pathway. Type 2 diabetes mellitus (T2DM) is a major 21st-century epidemic. T2DM elevates the risk of myocardial infarction and heart failure while also reducinges survival rates. Recently Ferroptosis has been found to be involved in the development of various cardiovascular diseases. TRPV1 is also a potential therapeutic target for cardioprotection. This study explores whether capsaicin, a transient receptor potential vanilloid receptor 1 (TRPV1) agonist, can prevent diabetic myocardial infarction-induced injury by inhibiting ferroptosis. T2DM model was induced by high-fat diet (HFD) feeding combined with streptozocin (STZ) injections, and the diabetic mice were treated with capsaicin(0.015 %) in their food. Myocardial infarction model was established as well. Mouse’ general characteristics, cardiac function, and morphological histology were observed and analyzed. RNA-seq was used to investigate the possible mechanism of injury in AC16 cardiomyocytes cultured with high glucose and hypoxia. In addition, the potential mechanism of capsaicin against injury was further investigated in AC16 cardiomyocytes cultured with high glucose and hypoxia. The RNA-seq analysis revealed that ferroptosis was associated with cell death induced by high-glucose in combination with hypoxia, and CAP treatment could effectively inhibit ferroptosis to enhance cell survival. In vivo studies demonstrated that CAP treatment significantly improved post-MI cardiac function, attenuated myocardial inflammation and fibrosis. Furthermore, it was observed that CAP reduced ferroptosis levels by activating TRPV1 in the heart, upregulating Nrf2 expression, promoting Nrf2 nuclear translocation and increasing the expression of the Nrf2 downstream molecule Heme oxygenase-1 (HMOX1). Dietary capsaicin may inhibit cardiomyocyte ferroptosis through activation of myocardial TRPV1 and Nrf2/HMOX1 signaling pathway, which in turn exerts a protective effect on the myocardium after myocardial infarction in type 2 diabetic mice.
ISSN:1567-5769
1878-1705
1878-1705
DOI:10.1016/j.intimp.2024.112852