Nanohybrid-Based Redox Homeostasis Perturbators Escaped from Early Lysosomes toward Amplified Sensitization of Tumor Cells and Photothermally Maneuvered Pyroptosis Therapy
Reactive oxygen species (ROS) hold great potential in tumor pyroptosis therapy, yet they are still limited by short species lifespan and limited diffusion distance. Inducing cells into a metastable state and then applying external energy can effectively trigger pyroptosis, but systemic sensitization...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-08, Vol.16 (33), p.43212-43226 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Reactive oxygen species (ROS) hold great potential in tumor pyroptosis therapy, yet they are still limited by short species lifespan and limited diffusion distance. Inducing cells into a metastable state and then applying external energy can effectively trigger pyroptosis, but systemic sensitization still faces challenges, such as limited ROS content, rapid decay, and short treatment windows. Herein, a nanohybrid-based redox homeostasis-perturbator system was designed that synergistically induce early lysosomal escape, autophagy inhibition, and redox perturbation functions to effectively sensitize cells to address these challenges. Specifically, weakly alkaline layered double hydroxide nanosheets (LDH NSs) with pH-responsive degradation properties enabled early lysosomal escape within 4 h, releasing poly(L-dopa) nanoparticles for inducing catechol–quinone redox cycling in the cytoplasm. The intracellular ROS levels were systematically rebounded by 3–4 times in tumor cells and lasted for over 4 h. Subsequently induced lysosomal stress and Ca2+ signaling activation resulted in severe mitochondrial dysfunction, as well as a perilous metastable state. Thereby, sequential near-infrared light was applied to trigger amplified stress through a local photothermal conversion. This led to sufficiently high levels of cleaved caspase-1 and GSDMD activation (2.5–2.8-fold increment) and subsequent pyroptosis response. In addition, OH– released by LDH elevated pH to alleviate the limitation of glutathione depletion by quinones at acidic pH and inhibit protective autophagy. Largely secreted inflammatory factors (2.5–5.6-fold increment), efficient maturation of dendritic cells, and further immune stimulation were boosted for tumor inhibition as a consequence. This study offers a new paradigm and insights into the synergy of internal systematic cellular sensitization and sequential external energy treatment to achieve tumor suppression through pyroptosis. |
---|---|
ISSN: | 1944-8244 1944-8252 1944-8252 |
DOI: | 10.1021/acsami.4c06283 |