Dispersion-free inertial focusing (DIF) for high-yield polydisperse micro-particle filtration and analysis
Inertial focusing excels at the precise spatial ordering and separation of microparticles by size within fluid flows. However, this advantage, resulting from its inherent size-dependent dispersion, could turn into a drawback that challenges applications requiring consistent and uniform positioning o...
Gespeichert in:
Veröffentlicht in: | Lab on a chip 2024-08, Vol.24 (17), p.4182-4197 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Inertial focusing excels at the precise spatial ordering and separation of microparticles by size within fluid flows. However, this advantage, resulting from its inherent size-dependent dispersion, could turn into a drawback that challenges applications requiring consistent and uniform positioning of polydisperse particles, such as microfiltration and flow cytometry. To overcome this fundamental challenge, we introduce Dispersion-Free Inertial Focusing (DIF). This new method minimizes particle size-dependent dispersion while maintaining the high throughput and precision of standard inertial focusing, even in a highly polydisperse scenario. We demonstrate a rule-of-thumb principle to reinvent an inertial focusing system and achieve an efficient focusing of particles ranging from 6 to 30 μm in diameter onto a single plane with less than 3 μm variance and over 95% focusing efficiency at highly scalable throughput (2.4-30 mL h
) - a stark contrast to existing technologies that struggle with polydispersity. We demonstrated that DIF could be applied in a broad range of applications, particularly enabling high-yield continuous microparticle filtration and large-scale high-resolution single-cell morphological analysis of heterogeneous cell populations. This new technique is also readily compatible with the existing inertial microfluidic design and thus could unleash more diverse systems and applications. |
---|---|
ISSN: | 1473-0197 1473-0189 1473-0189 |
DOI: | 10.1039/d4lc00275j |