Spatio-temporal analysis and prediction of land use land cover (LULC) change in Wular Lake, Jammu and Kashmir, India

Landsat land use/land cover (LULC) data analysis to establish freshwater lakes’ temporal and spatial distribution can provide a solid foundation for future ecological and environmental policy development to manage ecosystems better. Analysis of changes in LULC is a method that can be used to learn m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental monitoring and assessment 2024-09, Vol.196 (9), p.782, Article 782
Hauptverfasser: Digra, Monia, Dhir, Renu, Sharma, Nonita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Landsat land use/land cover (LULC) data analysis to establish freshwater lakes’ temporal and spatial distribution can provide a solid foundation for future ecological and environmental policy development to manage ecosystems better. Analysis of changes in LULC is a method that can be used to learn more about direct and indirect human interactions with the environment for sustainability. Neural network technology significantly facilitates mapping between asymmetric and high-dimensional data. This paper presents a methodological advancement that integrates the CA-ANN (cellular automata-artificial neural network) technique with the dynamic characteristics of the water body to forecast forthcoming water levels and their spatial distribution in “Wular Lake.” We used remote sensing data from 2001 to 2021 with a 10-year interval to predict spatio-temporal change and LULC simulation. The validation of the calibration of predicted and accurate LULC maps for 2021 yielded a maximum kappa value of 0.86. Over the past three decades, the study region has seen an increase in a net change % in the impervious surface of 22.41% and in agricultural land by 52.02%, while water decreased by 14.12%, trees/forests decreased by 40.77%, shrubs decreased by 11.53%, and aquatic vegetation decreased by 4.14%. Multiple environmental challenges have arisen in the environmentally sustainable Wular Lake in the Kashmir Valley due to the vast land transformation, primarily due to human activities, and have been predominantly negative. The research acknowledges the importance of (LULC) analysis, recognizing it as a fundamental cornerstone for developing future ecological and environmental policy frameworks.
ISSN:0167-6369
1573-2959
1573-2959
DOI:10.1007/s10661-024-12928-0