Microbial Fabrication of Quantum Dots: Mechanism and Applications
More recently, the application of semiconductor nanomaterials called quantum dots (QDs), has gained considerable attention as they possess tunable optoelectronic and physicochemical properties. There are several routes of QDs synthesis some of which include lithography, molecular beam epitaxy, and c...
Gespeichert in:
Veröffentlicht in: | Current microbiology 2024-09, Vol.81 (9), p.294, Article 294 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | More recently, the application of semiconductor nanomaterials called quantum dots (QDs), has gained considerable attention as they possess tunable optoelectronic and physicochemical properties. There are several routes of QDs synthesis some of which include lithography, molecular beam epitaxy, and chemical reduction. However, most of these methods are expensive, labour intensive, and produce toxic by-products. Hence, the biosynthesis of QDs has been extensively researched for addressing the issues. This review elaborates on the biogenic synthesis of cadmium selenide, cadmium telluride, cadmium sulfide, lead sulfide, and zinc sulfide QDs using bacteria, and fungi. Further, we attempt to identify the underlying mechanism and critical parameters that can control the synthesis of QDs. Eventually, their application in detectors, photovoltaics, biodiesel, photocatalysis, infection-control, and bioimaging are discussed. Thus, biogenic QDs have a tremendous scope in future to emerge as next generation nanotheranostics although thorough pharmacokinetic, and pharmacodynamic studies are required. |
---|---|
ISSN: | 0343-8651 1432-0991 1432-0991 |
DOI: | 10.1007/s00284-024-03813-7 |