Valsartan as a prophylactic treatment against breast cancer development and niche activation: What molecular sequels follow chronic AT-1R blockade?

Transactivation of insulin-growth-factor-receptor (IGF-1R) by angiotensin-II-type-1-receptor (AT-1R) was only demonstrated in vascular-smooth-muscle cells and has never been tested in breast-cancer (BC). This investigation addressed the impact of chronic AT-1R blockade by valsartan (Val) on possible...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Life sciences (1973) 2024-09, Vol.353, p.122939, Article 122939
Hauptverfasser: Mansour, Amira M.A., Khattab, Mahmoud M., El-Khatib, Aiman S., Awaad, Ashraf K., El-Refaie, Wessam M., El-Mezayen, Nesrine S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transactivation of insulin-growth-factor-receptor (IGF-1R) by angiotensin-II-type-1-receptor (AT-1R) was only demonstrated in vascular-smooth-muscle cells and has never been tested in breast-cancer (BC). This investigation addressed the impact of chronic AT-1R blockade by valsartan (Val) on possible concurrent AT-1R/IGF-1R signaling inhibition, regressing BC-tumor-microenvironment (TME) cellular components activation, and hindering BC development. The effect of different Val doses (10, 20, 40 & 80 mg/kg/day for 490 days) was tested on dimethylbenz(a)anthracene (DMBA)-induced progesterone-promoted-BC in rats. The influence on intratumoral/circulating angiotensin-II (ANG-II) levels and AT-1R/Mas-R immunofluorescent-expression were assessed. The potential AT-1R/IGF-1R crosstalk within TME-BC-stem-cells (BCSCs) and cancer-associated-fibroblasts (CAFs) was evaluated by fluorescently marking these cells and locating the immunofluorescently-stained AT-1R/IGF-1R in them using confocal-laser-microscopy and further quantified by flow cytometry. In addition, the molecular alterations following blocking AT-1R were inspected including determining Src; crucial for IGF-1R transactivation by AT-1R, Notch-1; IGF-IR transcriptional-regulator, and PI3K/Akt &IL-6/STAT expression. Further, the suppression of CSCs' capabilities to maintain pluripotency, stemness features, epithelial-to-mesenchymal-transition (EMT), and angiogenesis was evaluated by assessing NANOG gene, aldehyde-dehydrogenase (ALDH), N-cadherin and vascular-endothelial-growth-factor (VEGF), respectively. Furthermore, the proliferative marker; Ki-67, was detected by immunostaining, and tumors were histologically graded using Elston-Ellis-modified-Scarff-Bloom-Richardson method. Prophylactic Val significantly reduced tumor size, prolonged latency, reduced tumor histopathologic grade, decreased circulating/intratumoral-ANG-II levels, increased Mas-R, and decreased AT1R expression. AT-1R/IGF-1R were co-expressed with a high correlation coefficient on CAFs/BCSCs. Moreover, Val significantly attenuated IGF-1R transactivation and transcriptional regulation via Src and Notch-1 genes' downregulation and reduced Src/IGF-IR-associated PI3K/Akt and IL-6/STAT3 signaling. Further, Val significantly decreased intratumoral NANOG, ALDH, N-cadherin, VEGF, and Ki-67 levels. Chronic Val administration carries a potential for repurposing as adjuvant or conjunct therapy for patients at high risk for BC.
ISSN:0024-3205
1879-0631
1879-0631
DOI:10.1016/j.lfs.2024.122939