Wireless electrocochleography in awake chinchillas: A model to study crossmodal modulations at the peripheral level
•Wireless EcochG is a feasible way to record high-quality signals reflecting receptor and neural activity from the cochlea.•Spontaneous auditory-nerve activity was modulated by visual crossmodal stimulation. The discovery and development of electrocochleography (ECochG) in animal models has been fun...
Gespeichert in:
Veröffentlicht in: | Hearing research 2024-09, Vol.451, p.109093, Article 109093 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •Wireless EcochG is a feasible way to record high-quality signals reflecting receptor and neural activity from the cochlea.•Spontaneous auditory-nerve activity was modulated by visual crossmodal stimulation.
The discovery and development of electrocochleography (ECochG) in animal models has been fundamental for its implementation in clinical audiology and neurotology. In our laboratory, the use of round-window ECochG recordings in chinchillas has allowed a better understanding of auditory efferent functioning. In previous works, we gave evidence of the corticofugal modulation of auditory-nerve and cochlear responses during visual attention and working memory. However, whether these cognitive top-down mechanisms to the most peripheral structures of the auditory pathway are also active during audiovisual crossmodal stimulation is unknown. Here, we introduce a new technique, wireless ECochG to record compound-action potentials of the auditory nerve (CAP), cochlear microphonics (CM), and round-window noise (RWN) in awake chinchillas during a paradigm of crossmodal (visual and auditory) stimulation. We compared ECochG data obtained from four awake chinchillas recorded with a wireless ECochG system with wired ECochG recordings from six anesthetized animals. Although ECochG experiments with the wireless system had a lower signal-to-noise ratio than wired recordings, their quality was sufficient to compare ECochG potentials in awake crossmodal conditions. We found non-significant differences in CAP and CM amplitudes in response to audiovisual stimulation compared to auditory stimulation alone (clicks and tones). On the other hand, spontaneous auditory-nerve activity (RWN) was modulated by visual crossmodal stimulation, suggesting that visual crossmodal simulation can modulate spontaneous but not evoked auditory-nerve activity. However, given the limited sample of 10 animals (4 wireless and 6 wired), these results should be interpreted cautiously. Future experiments are required to substantiate these conclusions. In addition, we introduce the use of wireless ECochG in animal models as a useful tool for translational research. |
---|---|
ISSN: | 0378-5955 1878-5891 1878-5891 |
DOI: | 10.1016/j.heares.2024.109093 |