Synthesis Ag-Hollandite by mild route for highly efficient ozone decomposition
Catalytic ozone (O3) decomposition is a promising technology for curbing indoor O3 pollution, whereas its application is limited by the stability and moisture resistance of heterogeneous catalysts. Ag-Hollandite is a capable solution, but its facile synthesis still lacks systematic investigation. In...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2024-09, Vol.477, p.135388, Article 135388 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Catalytic ozone (O3) decomposition is a promising technology for curbing indoor O3 pollution, whereas its application is limited by the stability and moisture resistance of heterogeneous catalysts. Ag-Hollandite is a capable solution, but its facile synthesis still lacks systematic investigation. In this study, Ag-Hollandite catalysts were prepared using AgMnO4 as the precursor by reflux (AMO-Re), hydrothermal (AMO-HT), and homogeneous (AMO-HR) methods, respectively. The as-prepared samples showed excellent stability under moisture conditions, with the optimal one maintaining an O3 conversion rate of 99.19 % after 100 h. In the characterization results, Ramsdellite (R-MnO2) was identified as an intermediate species in the synthesis. AMO-HR exhibits higher activity due to enhanced active site exposure and weakened adsorption towards *OO species, while reduced surface hydroxyl content was a crucial factor for moisture resistance. This study aims to contribute insights for preparing catalysts by a facile method.
[Display omitted]
•Improved synthesis route of Ag-Hollandite for enhanced catalytic O3 decomposition.•First elucidation of factors influencing the formation of intermediate Ramallite-type MnO2.•Novel devices and theoretical models for static testing.•Study revealed the inhibition mechanism of Ramallite-type towards reaction. |
---|---|
ISSN: | 0304-3894 1873-3336 1873-3336 |
DOI: | 10.1016/j.jhazmat.2024.135388 |