High-Dimensional Physical Reservoir with Back-End-of-Line-Compatible Tin Monoxide Thin-Film Transistor

This work demonstrates a physical reservoir using a back-end-of-line compatible thin-film transistor (TFT) with tin monoxide (SnO) as the channel material for neuromorphic computing. The electron trapping and time-dependent detrapping at the channel interface induce the SnO·TFT to exhibit fading mem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-08, Vol.16 (32), p.42884-42893
Hauptverfasser: Mun, Sahngik A., Jang, Yoon Ho, Han, Janguk, Shim, Sung Keun, Kang, Sukin, Lee, Yonghee, Choi, Jinheon, Cheong, Sunwoo, Lee, Soo Hyung, Ryoo, Seung Kyu, Han, Joon-Kyu, Hwang, Cheol Seong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 42893
container_issue 32
container_start_page 42884
container_title ACS applied materials & interfaces
container_volume 16
creator Mun, Sahngik A.
Jang, Yoon Ho
Han, Janguk
Shim, Sung Keun
Kang, Sukin
Lee, Yonghee
Choi, Jinheon
Cheong, Sunwoo
Lee, Soo Hyung
Ryoo, Seung Kyu
Han, Joon-Kyu
Hwang, Cheol Seong
description This work demonstrates a physical reservoir using a back-end-of-line compatible thin-film transistor (TFT) with tin monoxide (SnO) as the channel material for neuromorphic computing. The electron trapping and time-dependent detrapping at the channel interface induce the SnO·TFT to exhibit fading memory and nonlinearity characteristics, the critical assets for physical reservoir computing. The three-terminal configuration of the TFT allows the generation of higher-dimensional reservoir states by simultaneously adjusting the bias conditions of the gate and drain terminals, surpassing the performances of typical two-terminal-based reservoirs such as memristors. The high-dimensional SnO TFT reservoir performs exceptionally in two benchmark tests, achieving a 94.1% accuracy in Modified National Institute of Standards and Technology handwritten number recognition and a normalized root-mean-square error of 0.089 in Mackey-Glass time-series prediction. Furthermore, it is suitable for vertical integration because its fabrication temperature is
doi_str_mv 10.1021/acsami.4c07747
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3087352062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3087352062</sourcerecordid><originalsourceid>FETCH-LOGICAL-a215t-517aa02aa2e45b56fc66d7b57b9f4089a85fe0802be7c8327b00788dfb2e69183</originalsourceid><addsrcrecordid>eNp1kEFPwyAYhonRuDm9ejQ9GhMmpVDoUefmTGY0Zp4boNQyW5jQqvv31mzu5ul7v-R538MDwHmMxjHC8bVQQTRmTBRijLADMIwzQiDHFB_uMyEDcBLCCqE0wYgeg0GSIc4ZToegnJu3Ct6ZRttgnBV19FxtglF9eNFB-09nfPRl2iq6FeodTm0BXQkXxmo4cc1atEbWOloaGz06675N0T-VsXBm6iZaetGvhtb5U3BUijros90dgdfZdDmZw8XT_cPkZgEFjmkLacyEQFgIrAmVNC1VmhZMUiazkiCeCU5LjTjCUjPFE8wkQozzopRYp1nMkxG43O6uvfvodGjzxgSl61pY7bqQJ4izhGKU4h4db1HlXQhel_nam0b4TR6j_NdtvnWb79z2hYvddicbXezxP5k9cLUF-mK-cp3vdYb_1n4At76EIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3087352062</pqid></control><display><type>article</type><title>High-Dimensional Physical Reservoir with Back-End-of-Line-Compatible Tin Monoxide Thin-Film Transistor</title><source>ACS Publications</source><creator>Mun, Sahngik A. ; Jang, Yoon Ho ; Han, Janguk ; Shim, Sung Keun ; Kang, Sukin ; Lee, Yonghee ; Choi, Jinheon ; Cheong, Sunwoo ; Lee, Soo Hyung ; Ryoo, Seung Kyu ; Han, Joon-Kyu ; Hwang, Cheol Seong</creator><creatorcontrib>Mun, Sahngik A. ; Jang, Yoon Ho ; Han, Janguk ; Shim, Sung Keun ; Kang, Sukin ; Lee, Yonghee ; Choi, Jinheon ; Cheong, Sunwoo ; Lee, Soo Hyung ; Ryoo, Seung Kyu ; Han, Joon-Kyu ; Hwang, Cheol Seong</creatorcontrib><description>This work demonstrates a physical reservoir using a back-end-of-line compatible thin-film transistor (TFT) with tin monoxide (SnO) as the channel material for neuromorphic computing. The electron trapping and time-dependent detrapping at the channel interface induce the SnO·TFT to exhibit fading memory and nonlinearity characteristics, the critical assets for physical reservoir computing. The three-terminal configuration of the TFT allows the generation of higher-dimensional reservoir states by simultaneously adjusting the bias conditions of the gate and drain terminals, surpassing the performances of typical two-terminal-based reservoirs such as memristors. The high-dimensional SnO TFT reservoir performs exceptionally in two benchmark tests, achieving a 94.1% accuracy in Modified National Institute of Standards and Technology handwritten number recognition and a normalized root-mean-square error of 0.089 in Mackey-Glass time-series prediction. Furthermore, it is suitable for vertical integration because its fabrication temperature is &lt;250 °C, providing the benefit of achieving a high integration density.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c07747</identifier><identifier>PMID: 39088726</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Surfaces, Interfaces, and Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2024-08, Vol.16 (32), p.42884-42893</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a215t-517aa02aa2e45b56fc66d7b57b9f4089a85fe0802be7c8327b00788dfb2e69183</cites><orcidid>0009-0002-7097-7880 ; 0000-0002-6254-9758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c07747$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c07747$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39088726$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mun, Sahngik A.</creatorcontrib><creatorcontrib>Jang, Yoon Ho</creatorcontrib><creatorcontrib>Han, Janguk</creatorcontrib><creatorcontrib>Shim, Sung Keun</creatorcontrib><creatorcontrib>Kang, Sukin</creatorcontrib><creatorcontrib>Lee, Yonghee</creatorcontrib><creatorcontrib>Choi, Jinheon</creatorcontrib><creatorcontrib>Cheong, Sunwoo</creatorcontrib><creatorcontrib>Lee, Soo Hyung</creatorcontrib><creatorcontrib>Ryoo, Seung Kyu</creatorcontrib><creatorcontrib>Han, Joon-Kyu</creatorcontrib><creatorcontrib>Hwang, Cheol Seong</creatorcontrib><title>High-Dimensional Physical Reservoir with Back-End-of-Line-Compatible Tin Monoxide Thin-Film Transistor</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>This work demonstrates a physical reservoir using a back-end-of-line compatible thin-film transistor (TFT) with tin monoxide (SnO) as the channel material for neuromorphic computing. The electron trapping and time-dependent detrapping at the channel interface induce the SnO·TFT to exhibit fading memory and nonlinearity characteristics, the critical assets for physical reservoir computing. The three-terminal configuration of the TFT allows the generation of higher-dimensional reservoir states by simultaneously adjusting the bias conditions of the gate and drain terminals, surpassing the performances of typical two-terminal-based reservoirs such as memristors. The high-dimensional SnO TFT reservoir performs exceptionally in two benchmark tests, achieving a 94.1% accuracy in Modified National Institute of Standards and Technology handwritten number recognition and a normalized root-mean-square error of 0.089 in Mackey-Glass time-series prediction. Furthermore, it is suitable for vertical integration because its fabrication temperature is &lt;250 °C, providing the benefit of achieving a high integration density.</description><subject>Surfaces, Interfaces, and Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPwyAYhonRuDm9ejQ9GhMmpVDoUefmTGY0Zp4boNQyW5jQqvv31mzu5ul7v-R538MDwHmMxjHC8bVQQTRmTBRijLADMIwzQiDHFB_uMyEDcBLCCqE0wYgeg0GSIc4ZToegnJu3Ct6ZRttgnBV19FxtglF9eNFB-09nfPRl2iq6FeodTm0BXQkXxmo4cc1atEbWOloaGz06675N0T-VsXBm6iZaetGvhtb5U3BUijros90dgdfZdDmZw8XT_cPkZgEFjmkLacyEQFgIrAmVNC1VmhZMUiazkiCeCU5LjTjCUjPFE8wkQozzopRYp1nMkxG43O6uvfvodGjzxgSl61pY7bqQJ4izhGKU4h4db1HlXQhel_nam0b4TR6j_NdtvnWb79z2hYvddicbXezxP5k9cLUF-mK-cp3vdYb_1n4At76EIQ</recordid><startdate>20240814</startdate><enddate>20240814</enddate><creator>Mun, Sahngik A.</creator><creator>Jang, Yoon Ho</creator><creator>Han, Janguk</creator><creator>Shim, Sung Keun</creator><creator>Kang, Sukin</creator><creator>Lee, Yonghee</creator><creator>Choi, Jinheon</creator><creator>Cheong, Sunwoo</creator><creator>Lee, Soo Hyung</creator><creator>Ryoo, Seung Kyu</creator><creator>Han, Joon-Kyu</creator><creator>Hwang, Cheol Seong</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0002-7097-7880</orcidid><orcidid>https://orcid.org/0000-0002-6254-9758</orcidid></search><sort><creationdate>20240814</creationdate><title>High-Dimensional Physical Reservoir with Back-End-of-Line-Compatible Tin Monoxide Thin-Film Transistor</title><author>Mun, Sahngik A. ; Jang, Yoon Ho ; Han, Janguk ; Shim, Sung Keun ; Kang, Sukin ; Lee, Yonghee ; Choi, Jinheon ; Cheong, Sunwoo ; Lee, Soo Hyung ; Ryoo, Seung Kyu ; Han, Joon-Kyu ; Hwang, Cheol Seong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a215t-517aa02aa2e45b56fc66d7b57b9f4089a85fe0802be7c8327b00788dfb2e69183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Surfaces, Interfaces, and Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mun, Sahngik A.</creatorcontrib><creatorcontrib>Jang, Yoon Ho</creatorcontrib><creatorcontrib>Han, Janguk</creatorcontrib><creatorcontrib>Shim, Sung Keun</creatorcontrib><creatorcontrib>Kang, Sukin</creatorcontrib><creatorcontrib>Lee, Yonghee</creatorcontrib><creatorcontrib>Choi, Jinheon</creatorcontrib><creatorcontrib>Cheong, Sunwoo</creatorcontrib><creatorcontrib>Lee, Soo Hyung</creatorcontrib><creatorcontrib>Ryoo, Seung Kyu</creatorcontrib><creatorcontrib>Han, Joon-Kyu</creatorcontrib><creatorcontrib>Hwang, Cheol Seong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mun, Sahngik A.</au><au>Jang, Yoon Ho</au><au>Han, Janguk</au><au>Shim, Sung Keun</au><au>Kang, Sukin</au><au>Lee, Yonghee</au><au>Choi, Jinheon</au><au>Cheong, Sunwoo</au><au>Lee, Soo Hyung</au><au>Ryoo, Seung Kyu</au><au>Han, Joon-Kyu</au><au>Hwang, Cheol Seong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Dimensional Physical Reservoir with Back-End-of-Line-Compatible Tin Monoxide Thin-Film Transistor</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-08-14</date><risdate>2024</risdate><volume>16</volume><issue>32</issue><spage>42884</spage><epage>42893</epage><pages>42884-42893</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>This work demonstrates a physical reservoir using a back-end-of-line compatible thin-film transistor (TFT) with tin monoxide (SnO) as the channel material for neuromorphic computing. The electron trapping and time-dependent detrapping at the channel interface induce the SnO·TFT to exhibit fading memory and nonlinearity characteristics, the critical assets for physical reservoir computing. The three-terminal configuration of the TFT allows the generation of higher-dimensional reservoir states by simultaneously adjusting the bias conditions of the gate and drain terminals, surpassing the performances of typical two-terminal-based reservoirs such as memristors. The high-dimensional SnO TFT reservoir performs exceptionally in two benchmark tests, achieving a 94.1% accuracy in Modified National Institute of Standards and Technology handwritten number recognition and a normalized root-mean-square error of 0.089 in Mackey-Glass time-series prediction. Furthermore, it is suitable for vertical integration because its fabrication temperature is &lt;250 °C, providing the benefit of achieving a high integration density.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39088726</pmid><doi>10.1021/acsami.4c07747</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0002-7097-7880</orcidid><orcidid>https://orcid.org/0000-0002-6254-9758</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-08, Vol.16 (32), p.42884-42893
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_proquest_miscellaneous_3087352062
source ACS Publications
subjects Surfaces, Interfaces, and Applications
title High-Dimensional Physical Reservoir with Back-End-of-Line-Compatible Tin Monoxide Thin-Film Transistor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A20%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Dimensional%20Physical%20Reservoir%20with%20Back-End-of-Line-Compatible%20Tin%20Monoxide%20Thin-Film%20Transistor&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Mun,%20Sahngik%20A.&rft.date=2024-08-14&rft.volume=16&rft.issue=32&rft.spage=42884&rft.epage=42893&rft.pages=42884-42893&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c07747&rft_dat=%3Cproquest_cross%3E3087352062%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3087352062&rft_id=info:pmid/39088726&rfr_iscdi=true