High-Dimensional Physical Reservoir with Back-End-of-Line-Compatible Tin Monoxide Thin-Film Transistor

This work demonstrates a physical reservoir using a back-end-of-line compatible thin-film transistor (TFT) with tin monoxide (SnO) as the channel material for neuromorphic computing. The electron trapping and time-dependent detrapping at the channel interface induce the SnO·TFT to exhibit fading mem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-08, Vol.16 (32), p.42884-42893
Hauptverfasser: Mun, Sahngik A., Jang, Yoon Ho, Han, Janguk, Shim, Sung Keun, Kang, Sukin, Lee, Yonghee, Choi, Jinheon, Cheong, Sunwoo, Lee, Soo Hyung, Ryoo, Seung Kyu, Han, Joon-Kyu, Hwang, Cheol Seong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work demonstrates a physical reservoir using a back-end-of-line compatible thin-film transistor (TFT) with tin monoxide (SnO) as the channel material for neuromorphic computing. The electron trapping and time-dependent detrapping at the channel interface induce the SnO·TFT to exhibit fading memory and nonlinearity characteristics, the critical assets for physical reservoir computing. The three-terminal configuration of the TFT allows the generation of higher-dimensional reservoir states by simultaneously adjusting the bias conditions of the gate and drain terminals, surpassing the performances of typical two-terminal-based reservoirs such as memristors. The high-dimensional SnO TFT reservoir performs exceptionally in two benchmark tests, achieving a 94.1% accuracy in Modified National Institute of Standards and Technology handwritten number recognition and a normalized root-mean-square error of 0.089 in Mackey-Glass time-series prediction. Furthermore, it is suitable for vertical integration because its fabrication temperature is
ISSN:1944-8244
1944-8252
1944-8252
DOI:10.1021/acsami.4c07747