Kylin-V: An open-source package calculating the dynamic and spectroscopic properties of large systems

Quantum dynamics simulation and computational spectroscopy serve as indispensable tools for the theoretical understanding of various fundamental physical and chemical processes, ranging from charge transfer to photochemical reactions. When simulating realistic systems, the primary challenge stems fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2024-08, Vol.161 (5)
Hauptverfasser: Xu, Yihe, Liu, Chungen, Ma, Haibo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum dynamics simulation and computational spectroscopy serve as indispensable tools for the theoretical understanding of various fundamental physical and chemical processes, ranging from charge transfer to photochemical reactions. When simulating realistic systems, the primary challenge stems from the overwhelming number of degrees of freedom and the pronounced many-body correlations. Here, we present Kylin-V, an innovative quantum dynamics package designed for accurate and efficient simulations of dynamics and spectroscopic properties of vibronic Hamiltonians for molecular systems and their aggregates. Kylin-V supports various quantum dynamics and computational spectroscopy methods, such as time-dependent density matrix renormalization group and our recently proposed single-site and hierarchical mapping approaches, as well as vibrational heat-bath configuration interaction. In this paper, we introduce the methodologies implemented in Kylin-V and illustrate their performances through a diverse collection of numerical examples.
ISSN:0021-9606
1089-7690
1089-7690
DOI:10.1063/5.0220712