Synergistically Engineering Grains and Grain Boundaries toward Li Dendrite-Free Li7La3Zr2O12

Cation-doped cubic Li7La3Zr2O12 is regarded as a promising solid electrolyte for safe and energy-dense solid-state lithium batteries. However, it suffers from the formation of Li2CO3 and high electronic conductivity, which give rise to an unconformable Li/Li7La3Zr2O12 interface and lithium dendrites...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2024-08, Vol.24 (32), p.9801-9807
Hauptverfasser: Deng, Shiwei, Zhu, Huilin, Zheng, Zhiyuan, Kong, Zixiang, Wang, Zixing, Zhou, Wang, Tang, Rui, Wu, Jian-Fang, Liu, Jilei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cation-doped cubic Li7La3Zr2O12 is regarded as a promising solid electrolyte for safe and energy-dense solid-state lithium batteries. However, it suffers from the formation of Li2CO3 and high electronic conductivity, which give rise to an unconformable Li/Li7La3Zr2O12 interface and lithium dendrites. Herein, composite AlF3-Li6.4La3Zr1.4Ta0.6O12 solid electrolytes were created based on thermal AlF3 decomposition and F/O displacement reactions under a high-temperature sintering process. When the AlF3 is thermally decomposed, it leaves Al2O3/AlF3 meliorating the grain boundaries and F– ions partially displacing O2– ions in the grains. Due to the higher electronegativity of F– in the grains and the grain-boundary modification, these AlF3-Li6.4La3Zr1.4Ta0.6O12 deliver optimized electronic conduction and chemical stability against the formation of Li2CO3. The Li/AlF3-Li6.4La3Zr1.4Ta0.6O12/Li cell exhibits a low interfacial resistance of ∼16 Ω cm2 and an ultrastable long-term cycling behavior for 800 h under a current density of 200 μA/cm2, leading to Li//LiCoO2 solid-state batteries with good rate performance and cycling stability.
ISSN:1530-6984
1530-6992
1530-6992
DOI:10.1021/acs.nanolett.4c01266