Multi-polygenic score prediction of mathematics, reading, and language abilities independent of general cognitive ability

Specific cognitive abilities (SCA) correlate genetically about 0.50, which underpins general cognitive ability (g), but it also means that there is considerable genetic specificity. If g is not controlled, then genomic prediction of specific cognitive abilities is not truly specific because they are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular psychiatry 2024-07
Hauptverfasser: Procopio, Francesca, Liao, Wangjingyi, Rimfeld, Kaili, Malanchini, Margherita, von Stumm, Sophie, Allegrini, Andrea G, Plomin, Robert
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Specific cognitive abilities (SCA) correlate genetically about 0.50, which underpins general cognitive ability (g), but it also means that there is considerable genetic specificity. If g is not controlled, then genomic prediction of specific cognitive abilities is not truly specific because they are all perfused with g. Here, we investigated the heritability of mathematics, reading, and language ability independent of g (SCA.g) using twins and DNA, and the extent to which multiple genome-wide polygenic scores (multi-PGS) can jointly predict these SCA.g as compared to SCA uncorrected for g. We created SCA and SCA.g composites from a battery of 14 cognitive tests administered at age 12 to 5,000 twin pairs in the Twins Early Development Study (TEDS). Univariate twin analyses yielded an average heritability estimate of 40% for SCA.g, compared to 53% for uncorrected SCA. Using genome-wide SNP genotypes, average SNP-based heritabilities were 26% for SCA.g and 35% for SCA. We then created multi-PGS from at least 50 PGS to predict each SCA and SCA.g using elastic net penalised regression models. Multi-PGS predicted 4.4% of the variance of SCA.g on average, compared to 11.1% for SCA uncorrected for g. The twin, SNP and PGS heritability estimates for SCA.g provide further evidence that the heritabilities of SCA are not merely a reflection of g. Although the relative reduction in heritability from SCA to SCA.g was greater for PGS heritability than for twin or SNP heritability, this decrease is likely due to the paucity of PGS for SCA. We hope that these results encourage researchers to conduct genome-wide association studies of SCA, and especially SCA.g, that can be used to predict PGS profiles of SCA strengths and weaknesses independent of g.
ISSN:1359-4184
1476-5578
1476-5578
DOI:10.1038/s41380-024-02671-w