Enhancement of vitamin B stability with the protection of whey protein and their interaction mechanisms
Vitamin B is easily degraded by light and heat during storage, which results in nutritional loss of food. Whey protein is expected to protect vitamin B by forming complexes through secondary bonds. The properties of the complexes and protective effects of whey protein on vitamins B1, B2, B3 and B6 w...
Gespeichert in:
Veröffentlicht in: | Food chemistry 2024-12, Vol.460 (Pt 2), p.140521, Article 140521 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Vitamin B is easily degraded by light and heat during storage, which results in nutritional loss of food. Whey protein is expected to protect vitamin B by forming complexes through secondary bonds. The properties of the complexes and protective effects of whey protein on vitamins B1, B2, B3 and B6 were characterized. The percentage losses of vitamin B were decreased by more than 60% with the protection of whey protein. FTIR, fluorescence spectroscopy, thermodynamic analysis and molecular docking were used to investigate the binding interaction between vitamin B and whey protein. Vitamin B quenched the intrinsic fluorescence of whey protein, mainly with a static nature (Kq > 2.0 × 1010 L/(mol·s)). The interactions between whey protein and vitamin B were mostly mediated by hydrogen bonds and van der Waals forces, as demonstrated by the thermodynamic parameters and molecular docking.
•Vitamin B losses were reduced by more than 60% in the presence of whey protein.•Vitamin B and whey protein interacted by hydrogen bonds and van der Waals force.•Vitamin B quenched the fluorescence of whey protein. |
---|---|
ISSN: | 0308-8146 1873-7072 1873-7072 |
DOI: | 10.1016/j.foodchem.2024.140521 |