Ultrathin In2O3thin-film transistors deposited from trimethylindium and ozone
Indium oxide (In2O3) is a promising channel material for thin-film transistors (TFTs). In this work, we develop an atomic layer deposition (ALD) process of using trimethylindium and ozone (O3) to deposit In2O3films and fabricate ultrathin In2O3TFTs. The In2O3TFTs with 4 nm channel thickness show gen...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2024-08, Vol.35 (43) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Indium oxide (In2O3) is a promising channel material for thin-film transistors (TFTs). In this work, we develop an atomic layer deposition (ALD) process of using trimethylindium and ozone (O3) to deposit In2O3films and fabricate ultrathin In2O3TFTs. The In2O3TFTs with 4 nm channel thickness show generally good switching characteristics with a highIon/Ioffof 108, a high mobility (μFE) of 16.2cm2V-1s-1and a positive threshold voltage (Vth) of 0.48 V. Although the 4 nm In2O3TFTs exhibit short channel effect, it can be improved by adding an ALD Ga2O3capping layer to afford the bilayer In2O3/Ga2O3channel structure. The afforded In2O3/Ga2O3TFTs exhibit improved immunity to the short channel effect, with good TFT characteristics ofIon/Ioffof 107,μFEof 9.3cm2V-1s-1, and positiveVthof 2.23 V. Overall, the thermal budget of the entire process is only 400 °C, which is suitable for the display and CMOS back-end-of-line-compatible applications.Indium oxide (In2O3) is a promising channel material for thin-film transistors (TFTs). In this work, we develop an atomic layer deposition (ALD) process of using trimethylindium and ozone (O3) to deposit In2O3films and fabricate ultrathin In2O3TFTs. The In2O3TFTs with 4 nm channel thickness show generally good switching characteristics with a highIon/Ioffof 108, a high mobility (μFE) of 16.2cm2V-1s-1and a positive threshold voltage (Vth) of 0.48 V. Although the 4 nm In2O3TFTs exhibit short channel effect, it can be improved by adding an ALD Ga2O3capping layer to afford the bilayer In2O3/Ga2O3channel structure. The afforded In2O3/Ga2O3TFTs exhibit improved immunity to the short channel effect, with good TFT characteristics ofIon/Ioffof 107,μFEof 9.3cm2V-1s-1, and positiveVthof 2.23 V. Overall, the thermal budget of the entire process is only 400 °C, which is suitable for the display and CMOS back-end-of-line-compatible applications. |
---|---|
ISSN: | 1361-6528 1361-6528 |
DOI: | 10.1088/1361-6528/ad6993 |