Exploring the binding characteristics of bovine serum albumin with CDK4/6 inhibitors Ribociclib: Multi-spectral analysis and molecular simulation studies
Ribociclib (RIB), a tyrosine kinase inhibitor, exhibits promising antitumor efficacy and controlled toxicity in HR+/HER2- breast cancer patients, which is closely related to the binding with plasma proteins. This study utilized a combination of spectroscopic techniques including UV spectroscopy, flu...
Gespeichert in:
Veröffentlicht in: | Journal of photochemistry and photobiology. B, Biology Biology, 2024-09, Vol.258, p.112992, Article 112992 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ribociclib (RIB), a tyrosine kinase inhibitor, exhibits promising antitumor efficacy and controlled toxicity in HR+/HER2- breast cancer patients, which is closely related to the binding with plasma proteins. This study utilized a combination of spectroscopic techniques including UV spectroscopy, fluorescence spectroscopy, and circular dichroism (CD) as well as molecular docking and molecular dynamic simulation to clarify the binding mechanism between bovine serum albumin (BSA) and RIB. The findings demonstrated that RIB produced a 1:1 stoichiometric complex with BSA, which quenched BSA's fluorescence in the manner of the static quenching mechanism. Site labelling experiments pinpointed Site III on BSA as the primary binding site for RIB, a finding validated by molecular docking. Van der Waals forces and hydrogen bonding interactions as key drivers in the formation of RIB-BSA complexes, a conclusion supported by molecular docking. Molecular simulation studies suggested that the insertion of RIB into the hydrophobic cavity (Site III) of BSA induced subtle conformational changes in the BSA protein, and CD measurements confirmed alterations in BSA secondary structure content. Synchronous and three-dimensional fluorescence spectroscopy further demonstrated that RIB decreased the hydrophobicity of the microenvironment surrounding tyrosine and tryptophan residues. These findings offer valuable insights into the pharmacokinetics and structural modifications of RIB.
•RIB inserts preferentially into the hydrophobic cavity on subdomains Site III of BSA.•Ribociclib reduced the hydrophobicity of the microenvironment of aromatic amino acid residues in BSA.•Hydrogen bonding, van der Waals force and hydrophobic interaction are the main forces that bind RIB to BSA.•The contribution of key residues to the stability of RIB-BSA system was discussed. |
---|---|
ISSN: | 1011-1344 1873-2682 1873-2682 |
DOI: | 10.1016/j.jphotobiol.2024.112992 |