Trapping an Elusive Fe(IV)-Superoxo Intermediate Inside a Self-Assembled Nanocage in Water at Room Temperature

Molecular cavities that mimic natural metalloenzymes have shown the potential to trap elusive reaction intermediates. Here, we demonstrate the formation of a rare yet stable Fe­(IV)-superoxo intermediate at room temperature subsequent to dioxygen binding at the Fe­(III) site of a (Et4N)2[FeIII(Cl)­(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2024-08, Vol.146 (31), p.21729-21741
Hauptverfasser: Gera, Rahul, De, Puja, Singh, Kundan K., Jannuzzi, Sergio A. V., Mohanty, Aisworika, Velasco, Lucia, Kulbir, Kumar, Pankaj, Marco, J. F., Nagarajan, Kalaivanan, Pecharromán, Carlos, Rodríguez-Pascual, P. M., DeBeer, Serena, Moonshiram, Dooshaye, Gupta, Sayam Sen, Dasgupta, Jyotishman
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Molecular cavities that mimic natural metalloenzymes have shown the potential to trap elusive reaction intermediates. Here, we demonstrate the formation of a rare yet stable Fe­(IV)-superoxo intermediate at room temperature subsequent to dioxygen binding at the Fe­(III) site of a (Et4N)2[FeIII(Cl)­(bTAML)] complex confined inside the hydrophobic interior of a water-soluble Pd6L4 12+ nanocage. Using a combination of electron paramagnetic resonance, Mössbauer, Raman/IR vibrational, X-ray absorption, and emission spectroscopies, we demonstrate that the cage-encapsulated complex has a Fe­(IV) oxidation state characterized by a stable S = 1/2 spin state and a short Fe–O bond distance of ∼1.70 Å. We find that the O2 reaction in confinement is reversible, while the formed Fe­(IV)-superoxo complex readily reacts when presented with substrates having weak C–H bonds, highlighting the lability of the O–O bond. We envision that such optimally trapped high-valent superoxos can show new classes of reactivities catalyzing both oxygen atom transfer and C–H bond activation reactions.
ISSN:0002-7863
1520-5126
1520-5126
DOI:10.1021/jacs.4c05849