Fundamental Studies on Fluids-Independent Regenerative Nanocomposite Hydrogels for Fracture Treatments of Conformance Control

Traditional granular hydrogels showed excellent injectivity, thermal integrity, and efficient remediation of heterogeneous reservoirs. However, granular hydrogels have demonstrated their inability to adapt to fractures due to the lack of sufficient interactions. Herein, we present new nanocomposite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-08, Vol.16 (31), p.41562-41569
Hauptverfasser: Li, Daqi, Zhang, Dujie, Li, Fan, Xiang, Qiaoling, Dong, Yuan, Wang, Lizhu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Traditional granular hydrogels showed excellent injectivity, thermal integrity, and efficient remediation of heterogeneous reservoirs. However, granular hydrogels have demonstrated their inability to adapt to fractures due to the lack of sufficient interactions. Herein, we present new nanocomposite hydrogels consisting of cationic nanogelators and anionic granular hydrogels that can chemically in situ reform bulk hydrogels in the fractures. Interestingly, our granular hydrogels showed recross-linking independence on carrying fluids, contrary to prior reported fluid-dependent recross-linking granular hydrogels. The recross-linking of nanogelators and granular hydrogels can be accomplished from room temperature to 130 °C. The nanocomposite hydrogels displayed increased shear elastic moduli compared to pristine anionic granular hydrogels, probably due to the increased covalent cross-links formed by the homogeneous regenerative approach. We found that the granular hydrogels had high salinity tolerance even in the presence of 1000 ppm divalent ions of calcium (Ca2+) since Ca2+ ions often act as the cross-linker for partially hydrolyzed acrylamide-based hydrogels. Overall, we obtained new regenerative nanocomposite hydrogels based on cationic nanogelators and anionic granular hydrogels for fracture treatments.
ISSN:1944-8244
1944-8252
1944-8252
DOI:10.1021/acsami.4c09258