New Classes of Magnetic Noise Self-Compensation Effects in Atomic Comagnetometer

Precision measurements of anomalous spin-dependent interactions are often hindered by magnetic noise and other magnetic systematic effects. Atomic comagnetometers use the distinct spin precession of two species and have emerged as important tools for effectively mitigating the magnetic noise. Nevert...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2024-07, Vol.133 (2), p.023202, Article 023202
Hauptverfasser: Qin, Yushu, Shao, Zhenhan, Hong, Taizhou, Wang, Yuanhong, Jiang, Min, Peng, Xinhua
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Precision measurements of anomalous spin-dependent interactions are often hindered by magnetic noise and other magnetic systematic effects. Atomic comagnetometers use the distinct spin precession of two species and have emerged as important tools for effectively mitigating the magnetic noise. Nevertheless, the operation of existing comagnetometers is limited to very low-frequency noise commonly below 1 Hz. Here, we report a new type of atomic comagnetometer based on a magnetic noise self-compensation mechanism originating from the destructive interference between alkali-metal and noble-gas spins. Our comagnetometer employing K-^{3}He system remarkably suppresses magnetic noise exceeding 2 orders of magnitude at higher frequencies up to 160 Hz. Moreover, we discover that the capability of our comagnetometer to suppress magnetic noise is spatially dependent on the orientation of the noise and can be conveniently controlled by adjusting the applied bias magnetic field. Our findings open up new possibilities for precision measurements, including enhancing the search sensitivity of spin-dark matter particles interactions into unexplored parameter space.
ISSN:0031-9007
1079-7114
1079-7114
DOI:10.1103/PhysRevLett.133.023202