Efficient dry reforming of methane realized by photoinduced acceleration of oxygen migration rate
[Display omitted] •Derived from Ti3C2Tx, TiO2 acts as a carrier, effectively avoiding agglomeration.•The generation rate of H2 under light reaches 496 mmol g−1 h−1.•This provides a new idea for solar photothermal conversion. Methane dry reforming (DRM) can consume greenhouse gases (CH4 and CO2) to p...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2024-12, Vol.676, p.1001-1010 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1010 |
---|---|
container_issue | |
container_start_page | 1001 |
container_title | Journal of colloid and interface science |
container_volume | 676 |
creator | Li, Zhende Lu, Jianfeng Ding, Jing Wang, Weilong |
description | [Display omitted]
•Derived from Ti3C2Tx, TiO2 acts as a carrier, effectively avoiding agglomeration.•The generation rate of H2 under light reaches 496 mmol g−1 h−1.•This provides a new idea for solar photothermal conversion.
Methane dry reforming (DRM) can consume greenhouse gases (CH4 and CO2) to produce valuable Fischer-Tropsch syngas (CO and H2). However, conventional thermally driven DRM consume large amounts of energy and face problems such as catalyst sintering and carbon deposition leading to insufficient catalytic activity. In this study, a photothermal synergistic TiO2/CeO2/Ru catalyst with high efficiency was designed. Under the light condition, the yields of H2 and CO reached 496.3 mmol g−1 h−1 and 522.4 mmol g−1 h−1, respectively. In addition, the catalyst demonstrated excellent stability after 100 h cyclic stability test. In-situ X-ray photoelectron spectroscopy (IS-XPS) and density functional theory (DFT) calculations revealed that the heterojunction interface formed by TiO2/CeO2/Ru is favourable for capturing photogenerated electrons and suppressing the recombination rate of photons and holes, thus improving the photocatalytic performance. Furthermore, light-induced metal-to-metal charge transfer (MMCT) accelerated oxygen migration, which not only improved the catalytic activity, but also suppressed the formation of carbon deposits on the catalyst surface, thereby enhancing the cycling stability. This study explores the mechanism of photothermally synergistic DRM, which provides a new pathway for the efficient use of solar energy. |
doi_str_mv | 10.1016/j.jcis.2024.07.194 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3085686197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979724017089</els_id><sourcerecordid>3085686197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c237t-db718328c8d8d52a715bfbcf9a61e2968c3bb9f26b65faa4f52e36a0c886cb2e3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EglL4AxxQjlwSbKfxQ-KCEC8JiQucLdtZt66auNgpovx6HLVw5LT2ama08yF0QXBFMGHXy2ppfaooprMK84rI2QGaECybkhNcH6IJxpSUkkt-gk5TWmJMSNPIY3RSS8yEqOkE6XvnvPXQD0Ubt0UEF2Ln-3kRXNHBsNA95KVe-W9oC7Mt1oswBN-3G5v_2lpYQdSDD_1oCF_bOfRF5-f7XR5who6cXiU4388pen-4f7t7Kl9eH5_vbl9KS2s-lK3hJF8krGhF21DNSWOcsU5qRoBKJmxtjHSUGdY4rWeuoVAzja0QzJr8nqKrXe46ho8NpEF1PuX7VrlC2CRVY9EwwYjkWUp3UhtDSrmzWkff6bhVBKsRrVqqEa0a0SrMVUabTZf7_I3poP2z_LLMgpudAHLLTw9RpRFsBuUj2EG1wf-X_wOlrYya</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085686197</pqid></control><display><type>article</type><title>Efficient dry reforming of methane realized by photoinduced acceleration of oxygen migration rate</title><source>Elsevier ScienceDirect Journals</source><creator>Li, Zhende ; Lu, Jianfeng ; Ding, Jing ; Wang, Weilong</creator><creatorcontrib>Li, Zhende ; Lu, Jianfeng ; Ding, Jing ; Wang, Weilong</creatorcontrib><description>[Display omitted]
•Derived from Ti3C2Tx, TiO2 acts as a carrier, effectively avoiding agglomeration.•The generation rate of H2 under light reaches 496 mmol g−1 h−1.•This provides a new idea for solar photothermal conversion.
Methane dry reforming (DRM) can consume greenhouse gases (CH4 and CO2) to produce valuable Fischer-Tropsch syngas (CO and H2). However, conventional thermally driven DRM consume large amounts of energy and face problems such as catalyst sintering and carbon deposition leading to insufficient catalytic activity. In this study, a photothermal synergistic TiO2/CeO2/Ru catalyst with high efficiency was designed. Under the light condition, the yields of H2 and CO reached 496.3 mmol g−1 h−1 and 522.4 mmol g−1 h−1, respectively. In addition, the catalyst demonstrated excellent stability after 100 h cyclic stability test. In-situ X-ray photoelectron spectroscopy (IS-XPS) and density functional theory (DFT) calculations revealed that the heterojunction interface formed by TiO2/CeO2/Ru is favourable for capturing photogenerated electrons and suppressing the recombination rate of photons and holes, thus improving the photocatalytic performance. Furthermore, light-induced metal-to-metal charge transfer (MMCT) accelerated oxygen migration, which not only improved the catalytic activity, but also suppressed the formation of carbon deposits on the catalyst surface, thereby enhancing the cycling stability. This study explores the mechanism of photothermally synergistic DRM, which provides a new pathway for the efficient use of solar energy.</description><identifier>ISSN: 0021-9797</identifier><identifier>ISSN: 1095-7103</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2024.07.194</identifier><identifier>PMID: 39068832</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Dry reforming of methane ; Electron transfer ; Mechanism ; Oxygen migration</subject><ispartof>Journal of colloid and interface science, 2024-12, Vol.676, p.1001-1010</ispartof><rights>2024 Elsevier Inc.</rights><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c237t-db718328c8d8d52a715bfbcf9a61e2968c3bb9f26b65faa4f52e36a0c886cb2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcis.2024.07.194$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3538,27906,27907,45977</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39068832$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Zhende</creatorcontrib><creatorcontrib>Lu, Jianfeng</creatorcontrib><creatorcontrib>Ding, Jing</creatorcontrib><creatorcontrib>Wang, Weilong</creatorcontrib><title>Efficient dry reforming of methane realized by photoinduced acceleration of oxygen migration rate</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted]
•Derived from Ti3C2Tx, TiO2 acts as a carrier, effectively avoiding agglomeration.•The generation rate of H2 under light reaches 496 mmol g−1 h−1.•This provides a new idea for solar photothermal conversion.
Methane dry reforming (DRM) can consume greenhouse gases (CH4 and CO2) to produce valuable Fischer-Tropsch syngas (CO and H2). However, conventional thermally driven DRM consume large amounts of energy and face problems such as catalyst sintering and carbon deposition leading to insufficient catalytic activity. In this study, a photothermal synergistic TiO2/CeO2/Ru catalyst with high efficiency was designed. Under the light condition, the yields of H2 and CO reached 496.3 mmol g−1 h−1 and 522.4 mmol g−1 h−1, respectively. In addition, the catalyst demonstrated excellent stability after 100 h cyclic stability test. In-situ X-ray photoelectron spectroscopy (IS-XPS) and density functional theory (DFT) calculations revealed that the heterojunction interface formed by TiO2/CeO2/Ru is favourable for capturing photogenerated electrons and suppressing the recombination rate of photons and holes, thus improving the photocatalytic performance. Furthermore, light-induced metal-to-metal charge transfer (MMCT) accelerated oxygen migration, which not only improved the catalytic activity, but also suppressed the formation of carbon deposits on the catalyst surface, thereby enhancing the cycling stability. This study explores the mechanism of photothermally synergistic DRM, which provides a new pathway for the efficient use of solar energy.</description><subject>Dry reforming of methane</subject><subject>Electron transfer</subject><subject>Mechanism</subject><subject>Oxygen migration</subject><issn>0021-9797</issn><issn>1095-7103</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EglL4AxxQjlwSbKfxQ-KCEC8JiQucLdtZt66auNgpovx6HLVw5LT2ama08yF0QXBFMGHXy2ppfaooprMK84rI2QGaECybkhNcH6IJxpSUkkt-gk5TWmJMSNPIY3RSS8yEqOkE6XvnvPXQD0Ubt0UEF2Ln-3kRXNHBsNA95KVe-W9oC7Mt1oswBN-3G5v_2lpYQdSDD_1oCF_bOfRF5-f7XR5who6cXiU4388pen-4f7t7Kl9eH5_vbl9KS2s-lK3hJF8krGhF21DNSWOcsU5qRoBKJmxtjHSUGdY4rWeuoVAzja0QzJr8nqKrXe46ho8NpEF1PuX7VrlC2CRVY9EwwYjkWUp3UhtDSrmzWkff6bhVBKsRrVqqEa0a0SrMVUabTZf7_I3poP2z_LLMgpudAHLLTw9RpRFsBuUj2EG1wf-X_wOlrYya</recordid><startdate>20241215</startdate><enddate>20241215</enddate><creator>Li, Zhende</creator><creator>Lu, Jianfeng</creator><creator>Ding, Jing</creator><creator>Wang, Weilong</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20241215</creationdate><title>Efficient dry reforming of methane realized by photoinduced acceleration of oxygen migration rate</title><author>Li, Zhende ; Lu, Jianfeng ; Ding, Jing ; Wang, Weilong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c237t-db718328c8d8d52a715bfbcf9a61e2968c3bb9f26b65faa4f52e36a0c886cb2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Dry reforming of methane</topic><topic>Electron transfer</topic><topic>Mechanism</topic><topic>Oxygen migration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhende</creatorcontrib><creatorcontrib>Lu, Jianfeng</creatorcontrib><creatorcontrib>Ding, Jing</creatorcontrib><creatorcontrib>Wang, Weilong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhende</au><au>Lu, Jianfeng</au><au>Ding, Jing</au><au>Wang, Weilong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient dry reforming of methane realized by photoinduced acceleration of oxygen migration rate</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2024-12-15</date><risdate>2024</risdate><volume>676</volume><spage>1001</spage><epage>1010</epage><pages>1001-1010</pages><issn>0021-9797</issn><issn>1095-7103</issn><eissn>1095-7103</eissn><abstract>[Display omitted]
•Derived from Ti3C2Tx, TiO2 acts as a carrier, effectively avoiding agglomeration.•The generation rate of H2 under light reaches 496 mmol g−1 h−1.•This provides a new idea for solar photothermal conversion.
Methane dry reforming (DRM) can consume greenhouse gases (CH4 and CO2) to produce valuable Fischer-Tropsch syngas (CO and H2). However, conventional thermally driven DRM consume large amounts of energy and face problems such as catalyst sintering and carbon deposition leading to insufficient catalytic activity. In this study, a photothermal synergistic TiO2/CeO2/Ru catalyst with high efficiency was designed. Under the light condition, the yields of H2 and CO reached 496.3 mmol g−1 h−1 and 522.4 mmol g−1 h−1, respectively. In addition, the catalyst demonstrated excellent stability after 100 h cyclic stability test. In-situ X-ray photoelectron spectroscopy (IS-XPS) and density functional theory (DFT) calculations revealed that the heterojunction interface formed by TiO2/CeO2/Ru is favourable for capturing photogenerated electrons and suppressing the recombination rate of photons and holes, thus improving the photocatalytic performance. Furthermore, light-induced metal-to-metal charge transfer (MMCT) accelerated oxygen migration, which not only improved the catalytic activity, but also suppressed the formation of carbon deposits on the catalyst surface, thereby enhancing the cycling stability. This study explores the mechanism of photothermally synergistic DRM, which provides a new pathway for the efficient use of solar energy.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39068832</pmid><doi>10.1016/j.jcis.2024.07.194</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9797 |
ispartof | Journal of colloid and interface science, 2024-12, Vol.676, p.1001-1010 |
issn | 0021-9797 1095-7103 1095-7103 |
language | eng |
recordid | cdi_proquest_miscellaneous_3085686197 |
source | Elsevier ScienceDirect Journals |
subjects | Dry reforming of methane Electron transfer Mechanism Oxygen migration |
title | Efficient dry reforming of methane realized by photoinduced acceleration of oxygen migration rate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A46%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20dry%20reforming%20of%20methane%20realized%20by%20photoinduced%20acceleration%20of%20oxygen%20migration%20rate&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Li,%20Zhende&rft.date=2024-12-15&rft.volume=676&rft.spage=1001&rft.epage=1010&rft.pages=1001-1010&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2024.07.194&rft_dat=%3Cproquest_cross%3E3085686197%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3085686197&rft_id=info:pmid/39068832&rft_els_id=S0021979724017089&rfr_iscdi=true |