ATP-sensitive potassium channel opener, Nicorandil, inhibits NF-κB/AIM2/GSDMD pathway activation to protect against neuroinflammation in ischemic stroke

The absent in melanoma 2 (AIM2) inflammasome contributes to ischemic brain injury by inducing cell pyroptosis and inflammatory responses. Our research group has previously demonstrated that ATP-sensitive potassium channels (KATP channels) openers can modulate neuronal synaptic plasticity post-ischem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurochemistry international 2024-10, Vol.179, p.105810, Article 105810
Hauptverfasser: Zhao, Chenming, Fu, Xiaojuan, Yang, Zhuoying, Zhang, Qiujun, Zhao, Yuanzheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The absent in melanoma 2 (AIM2) inflammasome contributes to ischemic brain injury by inducing cell pyroptosis and inflammatory responses. Our research group has previously demonstrated that ATP-sensitive potassium channels (KATP channels) openers can modulate neuronal synaptic plasticity post-ischemic stroke for neuroprotection. However, the specific mechanisms of KATP channels in the inflammatory response following ischemic stroke remain unclear. Here, we assessed cellular damage by observing changes in BV-2 morphology and viability. 2,3,5-Triphenyl tetrazolium chloride (TTC) staining, mNSS scoring, Nissl staining, and TdT-mediated dUTP nick end labeling (TUNEL) staining were used to evaluate behavioral deficits, brain injury severity, and neuronal damage in mice subjected to middle cerebral artery occlusion (MCAO). Quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, immunofluorescence, and enzyme-linked immunosorbent assay (ELISA) were used to measure cell pyroptosis and nuclear factor-kappaB (NF-κB) activation in vivo and in vitro. We observed that AIM2 protein expression was upregulated and localized within the cytoplasm of BV-2 cells. Notably, low-dose Nicorandil treatment reduced inflammatory cytokine secretion and pyroptosis-related protein expression, including AIM2, cleaved cysteinyl aspartate-specific protease-1 (cleaved caspase-1), and Gasdermin D N-terminal (GSDMD-NT). Further investigations revealed that the KATP channel inhibitor 5-HD upregulated p-NF-κB p65, NF-κB p65, and p-IκBα expression, reversing Nicorandil's neuroprotective effect in vivo. In summary, our results suggest that Nicorandil may serve as a potential therapeutic option for ischemic stroke. Targeting AIM2 and NF-κB represents effective strategies for inhibiting neuroinflammation. •ATP-sensitive potassium channel opening demonstrates neuroprotective effects in ischemic stroke.•Nicorandil inhibits AIM2 inflammasome-mediated pyroptosis and NF-κB pathway activation following ischemic stroke.•The anti-inflammatory effects of Nicorandil are reversed by blocking the KATP channel.
ISSN:0197-0186
1872-9754
1872-9754
DOI:10.1016/j.neuint.2024.105810