A bacteria-based index of biotic integrity assesses aquatic ecosystems effectively in rewetted long-term dry river channel after water replenishment

Climate-induced droughts exert a significant influence on the connectivity of river systems. It is estimated that about 25% of the world's rivers ran dry before reaching the ocean due to climate change and human activities. Ecological water replenishment is an effective measure for restoring aq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ambio 2024-07
Hauptverfasser: Liu, Qi, Yin, Senlu, Luo, Qiyong, Yi, Yujun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Climate-induced droughts exert a significant influence on the connectivity of river systems. It is estimated that about 25% of the world's rivers ran dry before reaching the ocean due to climate change and human activities. Ecological water replenishment is an effective measure for restoring aquatic ecosystems damaged by drought. It is urgently needed to quantitatively assess the aquatic ecosystems in rewetted dry river channels after water replenishment. This study investigated the variations in phytoplankton, zooplankton, benthic macroinvertebrates, and benthic bacterial communities in the rewetted dry river channel of Yongding River after water replenishment. In comparison with the water column communities, the benthic macroinvertebrates were identified as limiting factors for ecological restoration in rewetted dry river channels. In the absence of a certain recovery time for benthic macroinvertebrates, the benthic bacterial-based index of biological integrity, especially calculated based on their intrinsic properties, can properly assess aquatic ecosystems in rewetted dry river channels.
ISSN:0044-7447
1654-7209
1654-7209
DOI:10.1007/s13280-024-02060-1