Multi-Step Relaxation Characterization and Viscoelastic Modeling to Predict the Long-Term Behavior of Bitumen-Free Road Pavements Based on Polymeric Resin and Thixotropic Filler

Asphalt pavements are fundamental to modern transportation infrastructure, requiring elasticity, firmness, and longevity. However, traditional asphalt, based on bitumen, faces several limitations. To improve pavement performance, polymer resins are being used to substitute bitumen and improve requir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-07, Vol.17 (14), p.3511
Hauptverfasser: Emminger, Carina, Cakmak, Umut D, Major, Zoltan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Asphalt pavements are fundamental to modern transportation infrastructure, requiring elasticity, firmness, and longevity. However, traditional asphalt, based on bitumen, faces several limitations. To improve pavement performance, polymer resins are being used to substitute bitumen and improve requirements. Therefore, a deep understanding of the material behavior is required. This study presents the analysis of the relaxation behavior of a poly(methyl methacrylate)-based pavement and the influence of mineral fillers. An approach using a linear elastic-viscoelastic material model was selected based on evidence and validated across the linear and nonlinear deformation range. The results reveal no influence of the mineral fillers on the relaxation behavior. The presented modification of the linear elastic and viscoelastic modeling reveals accurate results to predict long-term pavement performance. This approach offers a practical method for forecasting asphalt behavior. Further research is needed to incorporate deformation behavior into the model.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma17143511