Mechanism of the Terahertz Wave–MXene Interaction and Surface/Interface Chemistry of MXene for Terahertz Absorption and Shielding

Conspectus Over the past two decades, terahertz (THz) technology has undergone rapid development, driven by advancements and the growing demand for THz applications across various scientific and technological domains. As the cornerstone of THz technology, strong THz–matter interactions, especially r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Accounts of chemical research 2024-08, Vol.57 (15), p.2184-2193
Hauptverfasser: Zhao, Tao, Wan, Hujie, Zhang, Tianze, Xiao, Xu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conspectus Over the past two decades, terahertz (THz) technology has undergone rapid development, driven by advancements and the growing demand for THz applications across various scientific and technological domains. As the cornerstone of THz technology, strong THz–matter interactions, especially realized as high THz intrinsic absorption in nanometer-thick materials, play a highly important role in various applications including but not limited to THz absorption/shielding, detection, etc. The rigorous electromagnetic theory has posited a maximum intrinsic absorption of 50% for electromagnetic waves by thin films, and the succinct impedance matching condition has also been formulated to guide the design of highly intrinsically absorbing materials. However, these theories face challenges when applied to the THz spectrum with an ultrabroad bandwidth. Existing thin films typically achieve a maximum intrinsic absorption within a narrow frequency range, significantly limiting the performance of THz absorbers and detectors. To date, both theoretical frameworks and experimental solutions are lacking in overcoming the challenge of achieving broadband maximum intrinsic absorption in the THz regime. In this Account, we describe how two-dimensional (2D) transition-metal carbide and/or nitride (MXene) films with nanometer thickness can realize the maximum intrinsic absorption in the ultrabroad THz band, which successfully addresses the forementioned longstanding issue. Surprisingly, traditional DC impedance matching theory fails to explain this phenomenon, while we instead propose a novel theory of AC impedance matching to provide a satisfactory explanation. By delving into the microscopic transport behavior of free electrons in MXene, we discover that intraflake transport dominates terahertz conductivity under THz wave excitation, while interflake transport primarily dictates DC conductivity. This not only elucidates the significant disparities between DC and AC impedance in MXenes but also underscores the suitability of AC impedance matching for achieving broadband THz absorption limits. Furthermore, we identify a high electron concentration and short relaxation time as crucial factors for achieving broadband maximum absorption in the THz regime. Although approaching the THz intrinsic absorbing limits, it still faces hurdles to the use of MXene in practical applications. First, diverse and uncontrollable terminations exist on the surface of MXene stemming from the s
ISSN:0001-4842
1520-4898
1520-4898
DOI:10.1021/acs.accounts.4c00326