scLEGA: an attention-based deep clustering method with a tendency for low expression of genes on single-cell RNA-seq data

Abstract Single-cell RNA sequencing (scRNA-seq) enables the exploration of biological heterogeneity among different cell types within tissues at a resolution. Inferring cell types within tissues is foundational for downstream research. Most existing methods for cell type inference based on scRNA-seq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Briefings in bioinformatics 2024-07, Vol.25 (5)
Hauptverfasser: Liu, Zhenze, Liang, Yingjian, Wang, Guohua, Zhang, Tianjiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Single-cell RNA sequencing (scRNA-seq) enables the exploration of biological heterogeneity among different cell types within tissues at a resolution. Inferring cell types within tissues is foundational for downstream research. Most existing methods for cell type inference based on scRNA-seq data primarily utilize highly variable genes (HVGs) with higher expression levels as clustering features, overlooking the contribution of HVGs with lower expression levels. To address this, we have designed a novel cell type inference method for scRNA-seq data, termed scLEGA. scLEGA employs a novel zero-inflated negative binomial (ZINB) loss function that fully considers the contribution of genes with lower expression levels and combines two distinct scRNA-seq clustering strategies through a multi-head attention mechanism. It utilizes a low-expression optimized denoising autoencoder, based on the novel ZINB model, to extract low-dimensional features and handle dropout events, and a GCN-based graph autoencoder (GAE) that leverages neighbor information to guide dimensionality reduction. The iterative fusion of denoising and topological embedding in scLEGA facilitates the acquisition of cluster-friendly cell representations in the hidden embedding, where similar cells are brought closer together. Compared to 12 state-of-the-art cell type inference methods on 15 scRNA-seq datasets, scLEGA demonstrates superior performance in clustering accuracy, scalability, and stability. Our scLEGA model codes are freely available at https://github.com/Masonze/scLEGA-main.
ISSN:1467-5463
1477-4054
1477-4054
DOI:10.1093/bib/bbae371