Using heart rate and acceleration biologgers to estimate winter activity costs in free-swimming largemouth bass

Winter is a critical period for largemouth bass (Micropterus nigricans) with winter severity and duration limiting their population growth at northern latitudes. Unfortunately, we have an incomplete understanding of their winter behaviour and energy use in the wild. More winter-focused research is n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comparative biochemistry and physiology. Part A, Molecular & integrative physiology Molecular & integrative physiology, 2024-11, Vol.297, p.111708, Article 111708
Hauptverfasser: Reeve, Connor, Smith, Kurtis A., Morin, Andre, Bzonek, Paul A., Cooke, Steven J., Brownscombe, Jacob W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Winter is a critical period for largemouth bass (Micropterus nigricans) with winter severity and duration limiting their population growth at northern latitudes. Unfortunately, we have an incomplete understanding of their winter behaviour and energy use in the wild. More winter-focused research is needed to better understand their annual energy budget, improve bioenergetics models, and establish baselines to assess the impacts of climate warming; however, winter research is challenging due to ice cover. Implantable tags show promise for winter-focused research as they can be deployed prior to ice formation. Here, using swim tunnel respirometry, we calibrated heart rate and acceleration biologgers to enable estimations of metabolic rate (ṀO2) and swimming speed in free-swimming largemouth bass across a range of winter-relevant temperatures. In addition, we assessed their aerobic and swim performance. Calculated group thermal sensitivities of most performance metrics indicated the passive physicochemical effects of temperature, suggesting little compensation in the cold; however, resting metabolic rate and critical swimming speed showed partial compensation. We found strong relationships between acceleration and swimming speed, as well as between ṀO2 and heart rate, acceleration, or swimming speed. Jackknife validations indicated that these modeled relationships accurately estimate swimming speed and ṀO2 from biologger recordings. However, there were relatively few reliable heart rate recordings to model the ṀO2 relationship. Recordings of heart rate were high-quality during holding but dropped during experimentation, potentially due to interference from aerobic muscles during swimming. The models informed by acceleration or swimming speed appear to be best suited for field applications. [Display omitted] •Here, we produce calibrations to estimate free-swimming activity and energy use.•Our models predict largemouth bass metabolism from tag recordings with low error.•Similarly, swimming speed can be predicted using our models with low error.•Bass aerobic performance suggests passive temperature effects on metabolism.
ISSN:1095-6433
1531-4332
1531-4332
DOI:10.1016/j.cbpa.2024.111708