Covalent Organic Framework Membranes with Patterned High-Density Through-Pores for Ultrafast Molecular Sieving
The creation of uniformly molecular-sized through-pores within polymeric membranes and the direct evidence of these pores are essential for fundamentally understanding the transport mechanism and improving separation efficiency. Herein, we report an electric-field-assisted interface synthesis approa...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2024-08, Vol.146 (31), p.21989-21998 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21998 |
---|---|
container_issue | 31 |
container_start_page | 21989 |
container_title | Journal of the American Chemical Society |
container_volume | 146 |
creator | Cao, Li Chen, Cailing An, Shuhao Xu, Ting Liu, Xiaowei Li, Zhen Chen, I-Chun Miao, Jun Li, Guanxing Han, Yu Lai, Zhiping |
description | The creation of uniformly molecular-sized through-pores within polymeric membranes and the direct evidence of these pores are essential for fundamentally understanding the transport mechanism and improving separation efficiency. Herein, we report an electric-field-assisted interface synthesis approach to fabricating large-area covalent organic framework (COF) membranes that consist of preferentially oriented single-crystalline COF domains. These single-crystalline frameworks were translated into high-density, vertically aligned through-pores across the entire membrane, enabling the direct visualization of membrane pores with an ultrahigh resolution of 2 Å using the low-dose high-resolution transmission electron microscopy technique (HRTEM). The density of directly visualized through-pores was quantified to be 1.2 × 1017 m–2, approaching theoretical predictions. These COF membranes demonstrate ultrahigh solvent permeability, which is 10 times higher than that of state-of-the-art organic solvent nanofiltration membranes. When applied to high-value pharmaceutical separations, their COF membranes exhibit 2 orders of magnitude higher methanol permeance and 20-fold greater enrichment efficiency than their commercial counterparts. |
doi_str_mv | 10.1021/jacs.4c07255 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_3085113916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153707716</sourcerecordid><originalsourceid>FETCH-LOGICAL-a244t-b6af1d04934527730f70dbf9382aff7cab60450d7f66ef0cc9f4ba545c933c2d3</originalsourceid><addsrcrecordid>eNqFkc1P4zAQxa0VaCkftz0jHzmQMv5OjqjQBQkEEnCOHMduU5IYbKeI_35T6LKXlTiNnvSbN5r3EPpFYEqAkrOVNnHKDSgqxA80IYJCJgiVO2gCADRTuWR7aD_G1Sg5zclPtMcKELmScoL6mV_r1vYJ34WF7huD50F39s2HZ3xruyro3kb81qQlvtcp2dDbGl81i2V2YfvYpHf8uAx-GPW9DyPpfMBPbQra6ZjwrW-tGVod8ENj102_OES7TrfRHm3nAXqaXz7OrrKbu9_Xs_ObTFPOU1ZJ7UgNvGBcUKUYOAV15QqWU-2cMrqSwAXUyklpHRhTOF5pwYUpGDO0Zgfo5NP3JfjXwcZUdk00tm3Hd_wQS0YEU6AUkd-jkAtCWPGBnn6iJvgYg3XlS2g6Hd5LAuWmjHJTRrktY8SPt85D1dn6C_6b_r_Tm62VH0I_ZvJ_rz8sQpOY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3085113916</pqid></control><display><type>article</type><title>Covalent Organic Framework Membranes with Patterned High-Density Through-Pores for Ultrafast Molecular Sieving</title><source>ACS Publications</source><creator>Cao, Li ; Chen, Cailing ; An, Shuhao ; Xu, Ting ; Liu, Xiaowei ; Li, Zhen ; Chen, I-Chun ; Miao, Jun ; Li, Guanxing ; Han, Yu ; Lai, Zhiping</creator><creatorcontrib>Cao, Li ; Chen, Cailing ; An, Shuhao ; Xu, Ting ; Liu, Xiaowei ; Li, Zhen ; Chen, I-Chun ; Miao, Jun ; Li, Guanxing ; Han, Yu ; Lai, Zhiping</creatorcontrib><description>The creation of uniformly molecular-sized through-pores within polymeric membranes and the direct evidence of these pores are essential for fundamentally understanding the transport mechanism and improving separation efficiency. Herein, we report an electric-field-assisted interface synthesis approach to fabricating large-area covalent organic framework (COF) membranes that consist of preferentially oriented single-crystalline COF domains. These single-crystalline frameworks were translated into high-density, vertically aligned through-pores across the entire membrane, enabling the direct visualization of membrane pores with an ultrahigh resolution of 2 Å using the low-dose high-resolution transmission electron microscopy technique (HRTEM). The density of directly visualized through-pores was quantified to be 1.2 × 1017 m–2, approaching theoretical predictions. These COF membranes demonstrate ultrahigh solvent permeability, which is 10 times higher than that of state-of-the-art organic solvent nanofiltration membranes. When applied to high-value pharmaceutical separations, their COF membranes exhibit 2 orders of magnitude higher methanol permeance and 20-fold greater enrichment efficiency than their commercial counterparts.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.4c07255</identifier><identifier>PMID: 39058766</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>methanol ; nanofiltration ; permeability ; polymers ; solvents ; transmission electron microscopy</subject><ispartof>Journal of the American Chemical Society, 2024-08, Vol.146 (31), p.21989-21998</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a244t-b6af1d04934527730f70dbf9382aff7cab60450d7f66ef0cc9f4ba545c933c2d3</cites><orcidid>0000-0002-9429-4681 ; 0000-0002-7048-9011 ; 0000-0003-1462-1118 ; 0000-0002-7087-9431 ; 0000-0003-2598-1354 ; 0000-0002-2577-0701 ; 0000-0001-9555-6009</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.4c07255$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.4c07255$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2756,27067,27915,27916,56729,56779</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39058766$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Li</creatorcontrib><creatorcontrib>Chen, Cailing</creatorcontrib><creatorcontrib>An, Shuhao</creatorcontrib><creatorcontrib>Xu, Ting</creatorcontrib><creatorcontrib>Liu, Xiaowei</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Chen, I-Chun</creatorcontrib><creatorcontrib>Miao, Jun</creatorcontrib><creatorcontrib>Li, Guanxing</creatorcontrib><creatorcontrib>Han, Yu</creatorcontrib><creatorcontrib>Lai, Zhiping</creatorcontrib><title>Covalent Organic Framework Membranes with Patterned High-Density Through-Pores for Ultrafast Molecular Sieving</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The creation of uniformly molecular-sized through-pores within polymeric membranes and the direct evidence of these pores are essential for fundamentally understanding the transport mechanism and improving separation efficiency. Herein, we report an electric-field-assisted interface synthesis approach to fabricating large-area covalent organic framework (COF) membranes that consist of preferentially oriented single-crystalline COF domains. These single-crystalline frameworks were translated into high-density, vertically aligned through-pores across the entire membrane, enabling the direct visualization of membrane pores with an ultrahigh resolution of 2 Å using the low-dose high-resolution transmission electron microscopy technique (HRTEM). The density of directly visualized through-pores was quantified to be 1.2 × 1017 m–2, approaching theoretical predictions. These COF membranes demonstrate ultrahigh solvent permeability, which is 10 times higher than that of state-of-the-art organic solvent nanofiltration membranes. When applied to high-value pharmaceutical separations, their COF membranes exhibit 2 orders of magnitude higher methanol permeance and 20-fold greater enrichment efficiency than their commercial counterparts.</description><subject>methanol</subject><subject>nanofiltration</subject><subject>permeability</subject><subject>polymers</subject><subject>solvents</subject><subject>transmission electron microscopy</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc1P4zAQxa0VaCkftz0jHzmQMv5OjqjQBQkEEnCOHMduU5IYbKeI_35T6LKXlTiNnvSbN5r3EPpFYEqAkrOVNnHKDSgqxA80IYJCJgiVO2gCADRTuWR7aD_G1Sg5zclPtMcKELmScoL6mV_r1vYJ34WF7huD50F39s2HZ3xruyro3kb81qQlvtcp2dDbGl81i2V2YfvYpHf8uAx-GPW9DyPpfMBPbQra6ZjwrW-tGVod8ENj102_OES7TrfRHm3nAXqaXz7OrrKbu9_Xs_ObTFPOU1ZJ7UgNvGBcUKUYOAV15QqWU-2cMrqSwAXUyklpHRhTOF5pwYUpGDO0Zgfo5NP3JfjXwcZUdk00tm3Hd_wQS0YEU6AUkd-jkAtCWPGBnn6iJvgYg3XlS2g6Hd5LAuWmjHJTRrktY8SPt85D1dn6C_6b_r_Tm62VH0I_ZvJ_rz8sQpOY</recordid><startdate>20240807</startdate><enddate>20240807</enddate><creator>Cao, Li</creator><creator>Chen, Cailing</creator><creator>An, Shuhao</creator><creator>Xu, Ting</creator><creator>Liu, Xiaowei</creator><creator>Li, Zhen</creator><creator>Chen, I-Chun</creator><creator>Miao, Jun</creator><creator>Li, Guanxing</creator><creator>Han, Yu</creator><creator>Lai, Zhiping</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-9429-4681</orcidid><orcidid>https://orcid.org/0000-0002-7048-9011</orcidid><orcidid>https://orcid.org/0000-0003-1462-1118</orcidid><orcidid>https://orcid.org/0000-0002-7087-9431</orcidid><orcidid>https://orcid.org/0000-0003-2598-1354</orcidid><orcidid>https://orcid.org/0000-0002-2577-0701</orcidid><orcidid>https://orcid.org/0000-0001-9555-6009</orcidid></search><sort><creationdate>20240807</creationdate><title>Covalent Organic Framework Membranes with Patterned High-Density Through-Pores for Ultrafast Molecular Sieving</title><author>Cao, Li ; Chen, Cailing ; An, Shuhao ; Xu, Ting ; Liu, Xiaowei ; Li, Zhen ; Chen, I-Chun ; Miao, Jun ; Li, Guanxing ; Han, Yu ; Lai, Zhiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a244t-b6af1d04934527730f70dbf9382aff7cab60450d7f66ef0cc9f4ba545c933c2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>methanol</topic><topic>nanofiltration</topic><topic>permeability</topic><topic>polymers</topic><topic>solvents</topic><topic>transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Li</creatorcontrib><creatorcontrib>Chen, Cailing</creatorcontrib><creatorcontrib>An, Shuhao</creatorcontrib><creatorcontrib>Xu, Ting</creatorcontrib><creatorcontrib>Liu, Xiaowei</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Chen, I-Chun</creatorcontrib><creatorcontrib>Miao, Jun</creatorcontrib><creatorcontrib>Li, Guanxing</creatorcontrib><creatorcontrib>Han, Yu</creatorcontrib><creatorcontrib>Lai, Zhiping</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Li</au><au>Chen, Cailing</au><au>An, Shuhao</au><au>Xu, Ting</au><au>Liu, Xiaowei</au><au>Li, Zhen</au><au>Chen, I-Chun</au><au>Miao, Jun</au><au>Li, Guanxing</au><au>Han, Yu</au><au>Lai, Zhiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Covalent Organic Framework Membranes with Patterned High-Density Through-Pores for Ultrafast Molecular Sieving</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2024-08-07</date><risdate>2024</risdate><volume>146</volume><issue>31</issue><spage>21989</spage><epage>21998</epage><pages>21989-21998</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>The creation of uniformly molecular-sized through-pores within polymeric membranes and the direct evidence of these pores are essential for fundamentally understanding the transport mechanism and improving separation efficiency. Herein, we report an electric-field-assisted interface synthesis approach to fabricating large-area covalent organic framework (COF) membranes that consist of preferentially oriented single-crystalline COF domains. These single-crystalline frameworks were translated into high-density, vertically aligned through-pores across the entire membrane, enabling the direct visualization of membrane pores with an ultrahigh resolution of 2 Å using the low-dose high-resolution transmission electron microscopy technique (HRTEM). The density of directly visualized through-pores was quantified to be 1.2 × 1017 m–2, approaching theoretical predictions. These COF membranes demonstrate ultrahigh solvent permeability, which is 10 times higher than that of state-of-the-art organic solvent nanofiltration membranes. When applied to high-value pharmaceutical separations, their COF membranes exhibit 2 orders of magnitude higher methanol permeance and 20-fold greater enrichment efficiency than their commercial counterparts.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39058766</pmid><doi>10.1021/jacs.4c07255</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9429-4681</orcidid><orcidid>https://orcid.org/0000-0002-7048-9011</orcidid><orcidid>https://orcid.org/0000-0003-1462-1118</orcidid><orcidid>https://orcid.org/0000-0002-7087-9431</orcidid><orcidid>https://orcid.org/0000-0003-2598-1354</orcidid><orcidid>https://orcid.org/0000-0002-2577-0701</orcidid><orcidid>https://orcid.org/0000-0001-9555-6009</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2024-08, Vol.146 (31), p.21989-21998 |
issn | 0002-7863 1520-5126 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_3085113916 |
source | ACS Publications |
subjects | methanol nanofiltration permeability polymers solvents transmission electron microscopy |
title | Covalent Organic Framework Membranes with Patterned High-Density Through-Pores for Ultrafast Molecular Sieving |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A43%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Covalent%20Organic%20Framework%20Membranes%20with%20Patterned%20High-Density%20Through-Pores%20for%20Ultrafast%20Molecular%20Sieving&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Cao,%20Li&rft.date=2024-08-07&rft.volume=146&rft.issue=31&rft.spage=21989&rft.epage=21998&rft.pages=21989-21998&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.4c07255&rft_dat=%3Cproquest_cross%3E3153707716%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3085113916&rft_id=info:pmid/39058766&rfr_iscdi=true |